Abstract
As a new thermal gelling polymer aqueous solution, we are reporting a poly(ethylene glycol)-poly(alanine) grafted chitosan (CS-g-(PA-PEG)) system. The sol-gel transition temperature and the modulus of the in situ-formed thermal gel at 37°C changed 17 → 27 →32°C and 396 → 241 → 43 Pa, respectively, as the pH increased from 3.0 to 6.5 and to 9.0. The mechanism of such a pH/temperature sensitive behaviour of the CS-g-(PA-PEG) aqueous solution was investigated by studying changes in the conformation of chitosan, polyalanine and PEG of the CS-g-(PA-PEG). As the temperature increased, ammonium groups of the chitosan partially deprotonated to a neutral form, the α-helical content of the polyalanine increased and molecular motion of the PEG decreased. Such changes cooperatively increase the hydrophobicity and viscosity of CS-g-(PA-PEG), resulting in the sol-gel transition of the polymer aqueous solution with increasing temperature. As the pH increased, ammonium groups of the chitosan deprotonated to a neutral form and the α-helical content of polyalanine decreased, which induce a change in the nanoassembly of the polymer. CS-g-(PA-PEG) significantly increased the gel modulus of a previously reported PEG grafted chitosan (CS-g-PEG) thermal gel by incorporating the α-helical polyalanine moieties between CS and PEG. The CS-g-(PA-PEG) could be a promising biomaterial as a new robust thermogel with pH and temperature sensitivity.
Original language | English |
---|---|
Pages (from-to) | 5484-5491 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry |
Volume | 21 |
Issue number | 14 |
DOIs | |
State | Published - 14 Apr 2011 |