TY - JOUR
T1 - Photo-Controlled Calcium Overload from Endogenous Sources for Tumor Therapy
AU - Hu, Jing Jing
AU - Yuan, Lizhen
AU - Zhang, Yunfan
AU - Kuang, Jing
AU - Song, Wen
AU - Lou, Xiaoding
AU - Xia, Fan
AU - Yoon, Juyoung
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024/2/26
Y1 - 2024/2/26
N2 - Designing reactive calcium-based nanogenerators to produce excess calcium ions (Ca2+) in tumor cells is an attractive tumor treatment method. However, nanogenerators that introduce exogenous Ca2+ are either overactive incapable of on-demand release, or excessively inert incapable of an overload of calcium rapidly. Herein, inspired by inherently diverse Ca2+-regulating channels, a photo-controlled Ca2+ nanomodulator that fully utilizes endogenous Ca2+ from dual sources was designed to achieve Ca2+ overload in tumor cells. Specifically, mesoporous silica nanoparticles were used to co-load bifunctional indocyanine green as a photodynamic/photothermal agent and a thermal-sensitive nitric oxide (NO) donor (BNN-6). Thereafter, they were coated with hyaluronic acid, which served as a tumor cell-targeting unit and a gatekeeper. Under near-infrared light irradiation, the Ca2+ nanomodulator can generate reactive oxygen species that stimulate the transient receptor potential ankyrin subtype 1 channel to realize Ca2+ influx from extracellular environments. Simultaneously, the converted heat can induce BNN-6 decomposition to generate NO, which would open the ryanodine receptor channel in the endoplasmic reticulum and allow stored Ca2+ to leak. Both in vitro and in vivo experiments demonstrated that the combination of photo-controlled Ca2+ influx and release could enable Ca2+ overload in the cytoplasm and efficiently inhibit tumor growth.
AB - Designing reactive calcium-based nanogenerators to produce excess calcium ions (Ca2+) in tumor cells is an attractive tumor treatment method. However, nanogenerators that introduce exogenous Ca2+ are either overactive incapable of on-demand release, or excessively inert incapable of an overload of calcium rapidly. Herein, inspired by inherently diverse Ca2+-regulating channels, a photo-controlled Ca2+ nanomodulator that fully utilizes endogenous Ca2+ from dual sources was designed to achieve Ca2+ overload in tumor cells. Specifically, mesoporous silica nanoparticles were used to co-load bifunctional indocyanine green as a photodynamic/photothermal agent and a thermal-sensitive nitric oxide (NO) donor (BNN-6). Thereafter, they were coated with hyaluronic acid, which served as a tumor cell-targeting unit and a gatekeeper. Under near-infrared light irradiation, the Ca2+ nanomodulator can generate reactive oxygen species that stimulate the transient receptor potential ankyrin subtype 1 channel to realize Ca2+ influx from extracellular environments. Simultaneously, the converted heat can induce BNN-6 decomposition to generate NO, which would open the ryanodine receptor channel in the endoplasmic reticulum and allow stored Ca2+ to leak. Both in vitro and in vivo experiments demonstrated that the combination of photo-controlled Ca2+ influx and release could enable Ca2+ overload in the cytoplasm and efficiently inhibit tumor growth.
KW - Calcium Ion Overload
KW - Mesoporous Silica Nanoparticles
KW - Nitric Oxide
KW - TRPA1 Channel
KW - Tumor Therapy
UR - http://www.scopus.com/inward/record.url?scp=85182841912&partnerID=8YFLogxK
U2 - 10.1002/anie.202317578
DO - 10.1002/anie.202317578
M3 - Article
C2 - 38192016
AN - SCOPUS:85182841912
SN - 1433-7851
VL - 63
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 9
M1 - e202317578
ER -