TY - JOUR
T1 - Pharmacokinetic evaluation of paclitaxel, albumin-binding paclitaxel, and liposomal-encapsulated albumin-binding paclitaxel upon gastric subserosal administration
AU - Lee, Yoontaek
AU - Park, Sun Mi
AU - Song, In Ho
AU - Kim, Bom Sahn
AU - Park, Hyun Soo
AU - Moon, Byung Seok
AU - Kim, Hyung Ho
N1 - Publisher Copyright:
Copyright © 2024 Lee, Park, Song, Kim, Park, Moon and Kim.
PY - 2024
Y1 - 2024
N2 - Introduction: Systemic chemotherapy is typically administered following radical gastrectomy for advanced stage. To attenuate systemic side effects, we evaluated the effectiveness of regional chemotherapy using paclitaxel, albumin-paclitaxel, and liposome-encapsulated albumin-paclitaxel via subserosal injection in rat models employing nuclear medicine and molecular imaging technology. Method: Nine Sprague Dawley rats were divided into three groups: paclitaxel (n = 3), albumin-paclitaxel nano-particles (APNs; n = 3), and liposome-encapsulated APNs (n = 3). [123I]Iodo-paclitaxel ([123I]I-paclitaxel) was synthesized by conventional electrophilic radioiodination using tert-butylstannyl substituted paclitaxel as the precursor. Albumin-[123I]iodo-paclitaxel nanoparticles ([123I]APNs) were prepared using a desolvation technique. Liposome-encapsulated APNs (L-[123I]APNs) were prepared by thin-film hydration using DSPE-PEG2000, HSPC, and cholesterol. The rats in each group were injected with each test drug into the subserosa of the stomach antrum. After predetermined times (30 min, 2, 4, 8 h, and 24 h), molecular images of nuclear medicine were acquired using single-photon emission computed tomography/computed tomography. Results: Paclitaxel, APNs, and L-APNs showed a high cumulative distribution in the stomach, with L-APNs showing the largest area under the curve. Most drugs administered via the gastric subserosal route are distributed in the stomach and intestines, with a low uptake of less than 1% in other major organs. The time to reach the maximum concentration in the intestine for L-APNs, paclitaxel, and APNs was 6.67, 5.33, and 4.00 h, respectively. Conclusion: These preliminary results imply that L-APNs have the potential to serve as a novel paclitaxel preparation method for the regional treatment of gastric cancer.
AB - Introduction: Systemic chemotherapy is typically administered following radical gastrectomy for advanced stage. To attenuate systemic side effects, we evaluated the effectiveness of regional chemotherapy using paclitaxel, albumin-paclitaxel, and liposome-encapsulated albumin-paclitaxel via subserosal injection in rat models employing nuclear medicine and molecular imaging technology. Method: Nine Sprague Dawley rats were divided into three groups: paclitaxel (n = 3), albumin-paclitaxel nano-particles (APNs; n = 3), and liposome-encapsulated APNs (n = 3). [123I]Iodo-paclitaxel ([123I]I-paclitaxel) was synthesized by conventional electrophilic radioiodination using tert-butylstannyl substituted paclitaxel as the precursor. Albumin-[123I]iodo-paclitaxel nanoparticles ([123I]APNs) were prepared using a desolvation technique. Liposome-encapsulated APNs (L-[123I]APNs) were prepared by thin-film hydration using DSPE-PEG2000, HSPC, and cholesterol. The rats in each group were injected with each test drug into the subserosa of the stomach antrum. After predetermined times (30 min, 2, 4, 8 h, and 24 h), molecular images of nuclear medicine were acquired using single-photon emission computed tomography/computed tomography. Results: Paclitaxel, APNs, and L-APNs showed a high cumulative distribution in the stomach, with L-APNs showing the largest area under the curve. Most drugs administered via the gastric subserosal route are distributed in the stomach and intestines, with a low uptake of less than 1% in other major organs. The time to reach the maximum concentration in the intestine for L-APNs, paclitaxel, and APNs was 6.67, 5.33, and 4.00 h, respectively. Conclusion: These preliminary results imply that L-APNs have the potential to serve as a novel paclitaxel preparation method for the regional treatment of gastric cancer.
KW - anticancer
KW - gastric subserosal administration
KW - liposome-encapsulated albumin-paclitaxel nanoparticles
KW - nuclear medicine and molecular imaging
KW - paclitaxel
UR - http://www.scopus.com/inward/record.url?scp=85196313183&partnerID=8YFLogxK
U2 - 10.3389/fphar.2024.1381406
DO - 10.3389/fphar.2024.1381406
M3 - Article
AN - SCOPUS:85196313183
SN - 1663-9812
VL - 15
JO - Frontiers in Pharmacology
JF - Frontiers in Pharmacology
M1 - 1381406
ER -