Abstract
Objectives: To test if adding permeability measurement to perfusion obtained from dynamic susceptibility contrast MRI (DSC-MRI) improves diagnostic performance in the differentiation of primary central nervous system lymphoma (PCNSL) from glioblastoma. Materials and methods: DSC-MRI was acquired in 145 patients with pathologically proven glioblastoma (n = 89) or PCNSL (n = 56). The permeability metrics of contrast agent extraction fraction (Ex), apparent permeability (Ka), and leakage-corrected perfusion of normalized cerebral blood volume (nCBVres) and cerebral blood flow (nCBFres) were derived from a tissue residue function. For comparison purposes, the leakage-corrected normalized CBV (nCBV) and relative permeability constant (K2) were also obtained using the established Weisskoff-Boxerman leakage correction method. The area under the receiver operating characteristics curve (AUC) and cross-validation were used to compare the diagnostic performance of the single DSC-MRI parameters with the performance obtained with the addition of permeability metrics. Results: PCNSL demonstrated significantly higher permeability (Ex, p <.001) and lower perfusion (nCBVres, nCBFres, and nCBV, all p <.001) than glioblastoma. The combination of Ex and nCBVres showed the highest performance (AUC, 0.96; 95% confidence interval, 0.92–0.99) for differentiating PCNSL from glioblastoma, which was a significant improvement over the single perfusion (nCBV: AUC, 0.84; nCBVres: AUC, 0.84; nCBFres: AUC, 0.82; all p <.001) or Ex (AUC, 0.80; p <.001) parameters. Conclusions: Analysis of the combined permeability and perfusion metrics obtained from a single DSC-MRI acquisition improves the diagnostic value for differentiating PCNSL from glioblastoma in comparison with single-parameter nCBV analysis. Key Points: • Permeability measurement can be calculated from DSC-MRI with a tissue residue function-based leakage correction. • Adding Exto CBV aids in the differentiation of PCNSL from glioblastoma. • CBV and Exmeasurements from DSC-MRI were highly reproducible.
Original language | English |
---|---|
Pages (from-to) | 5539-5548 |
Number of pages | 10 |
Journal | European Radiology |
Volume | 29 |
Issue number | 10 |
DOIs | |
State | Published - 1 Oct 2019 |
Bibliographical note
Publisher Copyright:© 2019, European Society of Radiology.
Keywords
- Glioblastoma
- Lymphoma
- Magnetic resonance imaging
- Perfusion magnetic resonance imaging
- Permeability