TY - GEN
T1 - Performance comparison of classifiers for differentiation among obstructive lung diseases based on features of texture analysis at HRCT
AU - Lee, Youngjoo
AU - Seo, Joon Beom
AU - Kang, Bokyoung
AU - Kim, Dongil
AU - Lee, June Goo
AU - Kim, Song Soo
AU - Kim, Namkug
AU - Kang, Suk Ho
PY - 2007
Y1 - 2007
N2 - The performance of classification algorithms for differentiating among obstructive lung diseases based on features from texture analysis using HRCT (High Resolution Computerized Tomography) images was compared. HRCT can provide accurate information for the detection of various obstructive lung diseases, including centrilobular emphysema, panlobular emphysema and bronchiolitis obliterans. Features on HRCT images can be subtle, however, particularly in the early stages of disease, and image-based diagnosis is subject to inter-observer variation. To automate the diagnosis and improve the accuracy, we compared three types of automated classification systems, naïve Bayesian classifier, ANN (Artificial Neural Net) and SVM (Support Vector Machine), based on their ability to differentiate among normal lung and three types of obstructive lung diseases. To assess the performance and cross-validation of these three classifiers, 5 folding methods with 5 randomly chosen groups were used. For a more robust result, each validation was repeated 100 times. SVM showed the best performance, with 86.5% overall sensitivity, significantly different from the other classifiers (one way ANOVA, p<0.01). We address the characteristics of each classifier affecting performance and the issue of which classifier is the most suitable for clinical applications, and propose an appropriate method to choose the best classifier and determine its optimal parameters for optimal disease discrimination. These results can be applied to classifiers for differentiation of other diseases.
AB - The performance of classification algorithms for differentiating among obstructive lung diseases based on features from texture analysis using HRCT (High Resolution Computerized Tomography) images was compared. HRCT can provide accurate information for the detection of various obstructive lung diseases, including centrilobular emphysema, panlobular emphysema and bronchiolitis obliterans. Features on HRCT images can be subtle, however, particularly in the early stages of disease, and image-based diagnosis is subject to inter-observer variation. To automate the diagnosis and improve the accuracy, we compared three types of automated classification systems, naïve Bayesian classifier, ANN (Artificial Neural Net) and SVM (Support Vector Machine), based on their ability to differentiate among normal lung and three types of obstructive lung diseases. To assess the performance and cross-validation of these three classifiers, 5 folding methods with 5 randomly chosen groups were used. For a more robust result, each validation was repeated 100 times. SVM showed the best performance, with 86.5% overall sensitivity, significantly different from the other classifiers (one way ANOVA, p<0.01). We address the characteristics of each classifier affecting performance and the issue of which classifier is the most suitable for clinical applications, and propose an appropriate method to choose the best classifier and determine its optimal parameters for optimal disease discrimination. These results can be applied to classifiers for differentiation of other diseases.
KW - ANN (Artificial Neural Net)
KW - Naïve Bayesian classifier
KW - Obstructive lung disease
KW - SVM (Support Vector Machine)
KW - Texture analysis
UR - http://www.scopus.com/inward/record.url?scp=36249031097&partnerID=8YFLogxK
U2 - 10.1117/12.710436
DO - 10.1117/12.710436
M3 - Conference contribution
AN - SCOPUS:36249031097
SN - 0819466301
SN - 9780819466303
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2007
T2 - Medical Imaging 2007: Image Processing
Y2 - 18 February 2007 through 20 February 2007
ER -