TY - JOUR
T1 - PEGylation and HAylation via catechol
T2 - α-Amine-specific reaction at N-terminus of peptides and proteins
AU - Song, In Taek
AU - Lee, Mihyun
AU - Lee, Hyukjin
AU - Han, Jinah
AU - Jang, Jae Hyung
AU - Lee, Moon Sue
AU - Koh, Gou Young
AU - Lee, Haeshin
N1 - Publisher Copyright:
© 2016 Acta Materialia Inc.
PY - 2016/10/1
Y1 - 2016/10/1
N2 - The development of chemoselective, site-specific chemistries for proteins/peptides is essential for biochemistry, pharmaceutical chemistry, and other fields. In this work, we found that catechol, which has been extensively utilized as an adhesive molecule for material-independent surface chemistry and as a crosslinker in hydrogel preparation, specifically reacts with N-terminal α-amines, avoiding the ε-amine group in lysine. A conjugate of methoxy-poly(ethylene glycol)-catechol called mPEG-cat chemoselectively reacts with N-terminal amine groups at neutral pH resulting in site-specific PEGylation. To demonstrate the versatility of this catechol chemoselective reaction, we used four proteins (lysozyme, basic-fibroblast growth factor (bFGF), granulocyte-colony stimulating factor (G-CSF), insulin, and erythropoietin (EPO)) as well as two peptides (hinge-3 and laminin-derived peptide (LDP)). All the tested macromolecules showed N-terminal site-specific modifications. Furthermore, we prepared another catechol grafted conjugate called hyaluronic acid-catechol (HA-cat) to demonstrate that this catechol-involved chemoselective chemistry is not specific for PEG conjugates. This new catechol chemoselective chemistry could be a new platform for the functionalization of proteins and peptides for a variety of purposes. Statement of Significance Considering the fact that biological activities of proteins or peptides depend largely on their 3-dimensional conformation, the orientation-controllable reaction is very important for preserving the intrinsic functionality of them. In addition to PEG, many other bio-polymers such as oligonucleotides, antibodies, and oligosaccharides have been conjugated with proteins or peptides for various biomedical applications. Although several chemoselective conjugation chemistries have been reported, conjugation efficiencies are different depending on types of proteins or polymers, and thus there've been strong needs for the development of alternative strategy of chemoselective conjugation that can be applied for a variety of therapeutic proteins towards high biological activities. We are certain this new catechol chemoselective chemistry could be a new platform for the functionalization of proteins and peptides for various purposes.
AB - The development of chemoselective, site-specific chemistries for proteins/peptides is essential for biochemistry, pharmaceutical chemistry, and other fields. In this work, we found that catechol, which has been extensively utilized as an adhesive molecule for material-independent surface chemistry and as a crosslinker in hydrogel preparation, specifically reacts with N-terminal α-amines, avoiding the ε-amine group in lysine. A conjugate of methoxy-poly(ethylene glycol)-catechol called mPEG-cat chemoselectively reacts with N-terminal amine groups at neutral pH resulting in site-specific PEGylation. To demonstrate the versatility of this catechol chemoselective reaction, we used four proteins (lysozyme, basic-fibroblast growth factor (bFGF), granulocyte-colony stimulating factor (G-CSF), insulin, and erythropoietin (EPO)) as well as two peptides (hinge-3 and laminin-derived peptide (LDP)). All the tested macromolecules showed N-terminal site-specific modifications. Furthermore, we prepared another catechol grafted conjugate called hyaluronic acid-catechol (HA-cat) to demonstrate that this catechol-involved chemoselective chemistry is not specific for PEG conjugates. This new catechol chemoselective chemistry could be a new platform for the functionalization of proteins and peptides for a variety of purposes. Statement of Significance Considering the fact that biological activities of proteins or peptides depend largely on their 3-dimensional conformation, the orientation-controllable reaction is very important for preserving the intrinsic functionality of them. In addition to PEG, many other bio-polymers such as oligonucleotides, antibodies, and oligosaccharides have been conjugated with proteins or peptides for various biomedical applications. Although several chemoselective conjugation chemistries have been reported, conjugation efficiencies are different depending on types of proteins or polymers, and thus there've been strong needs for the development of alternative strategy of chemoselective conjugation that can be applied for a variety of therapeutic proteins towards high biological activities. We are certain this new catechol chemoselective chemistry could be a new platform for the functionalization of proteins and peptides for various purposes.
KW - Catechol
KW - Chemoselective conjugation
KW - HAylation
KW - PEGylation
KW - α-Amine
UR - http://www.scopus.com/inward/record.url?scp=84991107796&partnerID=8YFLogxK
U2 - 10.1016/j.actbio.2016.07.018
DO - 10.1016/j.actbio.2016.07.018
M3 - Article
C2 - 27424082
AN - SCOPUS:84991107796
SN - 1742-7061
VL - 43
SP - 50
EP - 60
JO - Acta Biomaterialia
JF - Acta Biomaterialia
ER -