Abstract
Hydrogen (H2) gas has recently become a crucial energy source and an imperative energy vector, emerging as a powerful next-generation solution for fuel cells and biomedical, transportation, and household applications. With increasing interest in H2, safety concerns regarding personal injuries from its flammability and explosion at high concentrations (>4%) have inspired the development of wearable pre-emptive gas monitoring platforms that can operate on curved and jointed parts of the human body. In this study, a yarn-type hydrogen gas sensing platform (HGSP) was developed by biscrolling of palladium oxide nanoparticles (PdO NPs) and spinnable carbon nanotube (CNT) buckypapers. Because of the high loading of H2-active PdO NPs (up to 97.7 wt %), when exposed to a flammable H2concentration (4 vol %), the biscrolled HGSP yarn exhibits a short response time of 2 s, with a high sensitivity of 1198% (defined as ΔG/G0× 100%). Interestingly, during the reduction of PdO to Pd by H2gas, the HGSP yarn experienced a decrease in diameter and corresponding volume contraction. These excellent sensing performances suggest that the fabricated HGSP yarn could be applied to a wearable gas monitoring platform for real-time detection of H2gas leakage even over the bends of joints.
Original language | English |
---|---|
Pages (from-to) | 94-102 |
Number of pages | 9 |
Journal | ACS Sensors |
Volume | 8 |
Issue number | 1 |
DOIs | |
State | Published - 27 Jan 2023 |
Bibliographical note
Funding Information:This work was supported by the Basic Science Research Programs through the National Research Foundation of Korea (NRF-2022R1F1A1064550) and DGIST R&D program of the Ministry of Science and ICT of the Republic of Korea (Grant Number 22-ET-08).
Publisher Copyright:
© 2023 American Chemical Society. All rights reserved.
Keywords
- biscrolling technology
- hydrogen gas sensing platform
- palladium oxide
- reduction
- spinnable carbon nanotube