Parylene-insulated ultradense microfabricated coils

Florian Herrault, Svyatoslav Yorish, Thomas M. Crittenden, Chang Hyeon Ji, Mark G. Allen

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

This paper details the microfabrication and characterization of electrodeposited coils with high packing density. The process consists of electroplating a first sequence of metal microstructures, followed by conformal insulation of these conductors by a thin vapor-deposited layer of parylene, and subsequent electrodeposited metal filling between the first-layer conductors. Using this approach, the packing density limitation due to photoresist aspect ratio is overcome. The microcoils, which are fabricated onto a dummy substrate, are released and embedded into a parylene layer to reduce parasitic substrate losses at high frequencies, as well as to facilitate the device integration. Comblike test structures were designed and fabricated in order to validate the approach and to explore the electrical properties of such microconductors. Furthermore, ultradense parylene-insulated spiral windings were fabricated and electrically characterized. A large number of turns per volume can be fabricated because of this fabrication approach, which is a requirement for highly efficient small-scale magnetic actuators. Finally, an array of substrateless parylene-coated 2-D coils were built, then folded on top of each other, and electrically connected to form 3-D coil devices. A 14.6-mm-diameter 96-turn three-layer copper winding was fabricated and characterized. The packing density of the 3-D fabricated coil was 81%.

Original languageEnglish
Article number5599952
Pages (from-to)1277-1283
Number of pages7
JournalJournal of Microelectromechanical Systems
Volume19
Issue number6
DOIs
StatePublished - Dec 2010

Bibliographical note

Funding Information:
Manuscript received February 23, 2010; revised August 23, 2010; accepted September 5, 2010. Date of publication October 14, 2010; date of current version November 30, 2010. This work was supported in part by the Missile Defense Agency Small Business Innovation Research Phase I under Contract W9113M-07-C-0035 and Phase II under Contract W9113M-08-C-0165. Subject Editor C. H. Mastrangelo.

Keywords

  • Chemical vapor deposition
  • high aspect ratio
  • metal microelectromechanical systems (MEMS)
  • microcoils
  • parylene

Fingerprint

Dive into the research topics of 'Parylene-insulated ultradense microfabricated coils'. Together they form a unique fingerprint.

Cite this