TY - JOUR
T1 - Participation of two distinct hydroxylating intermediates in iron(III) porphyrin complex-catalyzed hydroxylation of Alkanes
AU - Nam, W.
AU - Mi Hee Lim, Hee Lim
AU - Sun Kyung Moon, Kyung Moon
AU - Kim, C.
PY - 2000/11/8
Y1 - 2000/11/8
N2 - We have obtained evidence that acylperoxo-iron(III) porphyrin complexes 1a are involved as reactive hydroxylating intermediates in the hydroxylation of alkanes by m-chloroperoxybenzoic acid (m-CPBA) catalyzed by electron-deficient iron(III) porphyrin complexes containing chloride as an anionic axial ligand in a solvent mixture of CH2Cl2 and CH3CN at -40 °C. In addition to the intermediacy of 1a, oxoiron(IV) porphyrin cation radical complexes 2 are formed as the reactive hydroxylating intermediates in the alkane hydroxylations by m-CPBA catalyzed by the iron(III) porphyrin complexes containing triflate (CF3SO3-) as an anionic axial ligand under the same reaction conditions. In line with the recent proposal by Newcomb, Coon, Vaz, and co-workers for cytochrome P-450 reactions, these results suggest that two distinct electrophilic oxidants such as 1a and 2 effect the alkane hydroxylations in iron porphyrin models, depending on the reaction conditions such as the nature of the anionic axial ligands of iron(III) porphyrin complexes.
AB - We have obtained evidence that acylperoxo-iron(III) porphyrin complexes 1a are involved as reactive hydroxylating intermediates in the hydroxylation of alkanes by m-chloroperoxybenzoic acid (m-CPBA) catalyzed by electron-deficient iron(III) porphyrin complexes containing chloride as an anionic axial ligand in a solvent mixture of CH2Cl2 and CH3CN at -40 °C. In addition to the intermediacy of 1a, oxoiron(IV) porphyrin cation radical complexes 2 are formed as the reactive hydroxylating intermediates in the alkane hydroxylations by m-CPBA catalyzed by the iron(III) porphyrin complexes containing triflate (CF3SO3-) as an anionic axial ligand under the same reaction conditions. In line with the recent proposal by Newcomb, Coon, Vaz, and co-workers for cytochrome P-450 reactions, these results suggest that two distinct electrophilic oxidants such as 1a and 2 effect the alkane hydroxylations in iron porphyrin models, depending on the reaction conditions such as the nature of the anionic axial ligands of iron(III) porphyrin complexes.
UR - http://www.scopus.com/inward/record.url?scp=0034623555&partnerID=8YFLogxK
U2 - 10.1021/ja0010554
DO - 10.1021/ja0010554
M3 - Article
AN - SCOPUS:0034623555
SN - 0002-7863
VL - 122
SP - 10805
EP - 10809
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 44
ER -