Abstract
The root of Panax ginseng C.A. Meyer has been shown to induce nitric oxide (NO) release resulting in a hypotensive effect. However, the main active component contributing to vascular endothelium relaxation remains uncertain. In this study, we hypothesized that multiple components of ginseng extract might have combinatory effects providing greater health benefits than a single ginsenosides. To test this hypothesis, we compared the NO-releasing and endothelial NO synthase (eNOS) activating potency of wide range of ginseng extracts (crude extract, CE; protopanaxatriol-enriched extract, TE; protopanaxadiol-enriched extract, DE) and individual ginsenosides (Rg1, Re and Rb1) in human umbilical vein endothelial cells. We found that TE had the highest potency in NO production, followed by CE, DE, and Rg1. We also observed that TE-treatment resulted in rapid activation of intracellular signaling pathways, immediate linear rise of NO, and increased eNOS activation. TE-induced activation of eNOS was abolished by pretreatment with wortmannin (inhibitor for PI3K-Akt), compound C (inhibitor for AMP activated protein kinase, AMPK) or L-NAME (inhibitor for NOS), whereas Rg1-induced eNOS phosphorylation was only partially attenuated. Further analysis revealed that TE, but not Rg1, results in AMPK phosphorylation at Thr172. These novel finding add evidence that the multiple components of Panax ginseng extract rich in protopanaxatriol offers combinatorial effects in NO production and vascular endothelium relaxation via multiple signaling pathways.
Original language | English |
---|---|
Article number | 96 |
Pages (from-to) | 1-7 |
Number of pages | 7 |
Journal | SpringerPlus |
Volume | 2 |
Issue number | 1 |
DOIs | |
State | Published - 2013 |
Bibliographical note
Funding Information:We thank the staff of CJ Cheiljedang Corp. (Seoul, Korea) for preparation of ginseng extracts. This project was supported by the Ministry of Knowledge & Economy (National Platform, Project B0009639) and the Ministry of Education, Science, and Technology (Brain Korea 21, Project 2006-0519-4-7).
Keywords
- AMP activated protein kinase
- Nitric oxide and human umbilical vein endothelial cells
- PI3K/Akt