Abstract
Two-dimensional MXene nanomaterials have found a wide application range in recent years. Here, Ti3C2 MXene nanosheets exhibiting inherent photothermal activity reveal synergistic plasmon-enhanced photocatalytic properties upon rational surface decoration with palladium nanoparticles (NPs). Pd incorporation induces a 1.7-fold increase in the number of defect sites on the MXene surface. Most importantly, the introduced Pd nanoparticles favour an effective separation and collection of localized surface plasmon resonance (LSPR)-induced hot charge carriers generated at the surface of semi-metallic Ti3C2 NS, further facilitating the generation of hydrogen peroxide (H2O2). The generated H2O2 is sequentially decomposed to hydroxyl radicals via the peroxidase (POD)-like activity of Pd NPs. The Pd@MXene shows approximately 2-fold enhancement of photocatalytic activity and excellent photostability under laser irradiation. Taken together, this study highlights the promise of constructing active and stable MXene-based nanohybrids for highly effective photo-responsive nanomedicine.
Original language | English |
---|---|
Pages (from-to) | 501-507 |
Number of pages | 7 |
Journal | Journal of Industrial and Engineering Chemistry |
Volume | 108 |
DOIs | |
State | Published - 25 Apr 2022 |
Keywords
- MXene nanosheets
- Nanozyme
- Pd nanoparticles
- Peroxidase-like activity