Oxygen and cell fate decisions

Qun Lin, Yuri Kim, Rodolfo M. Alarcon, Zhong Yun

Research output: Contribution to journalArticlepeer-review

34 Scopus citations


Molecular oxygen has been known to play a critical role in a wide range of biological processes including glycolysis, mitochondrial respiration, angiogenesis, pulmonary functions, and cardiovascular activities. An emerging theme has developed in recent years that oxygen has significant impact on embryonic development, maintenance of stem cells, and cellular differentiation or cell fate decisions. Among the notable observations, early embryonic development takes place in a hypoxic microenvironment. Hematopoietic stem cells appear to be located in hypoxic regions within the bone marrow. Majority of the current observations have shown that hypoxia seems to prevent cellular differentiation and to maintain pluripotency of stem/progenitor cells. Genetic studies have demonstrated a critical role of hypoxia-inducible factors 1α and 2α in embryonic development. These intriguing observations demonstrate an important role of molecular oxygen in such fundamental biological processes as stem cell maintenance and regulation of cell fate decisions. Herein, we describe some of the latest advances in the biology of molecular oxygen and provide our perspectives on the potential impact of these interesting findings.

Original languageEnglish
Pages (from-to)43-51
Number of pages9
JournalGene Regulation and Systems Biology
Issue number2
StatePublished - 2008


  • Adipogenesis
  • Chondrogenesis
  • Differentiation
  • Hypoxia
  • Myogenesis
  • Oxygen
  • Placenta
  • Preadipocytes
  • Progenitor cells
  • Stem cells
  • Trophoblasts


Dive into the research topics of 'Oxygen and cell fate decisions'. Together they form a unique fingerprint.

Cite this