Ordered Mesoporous C3N5 with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR)

In Young Kim, Sungho Kim, Xiaoyan Jin, Selvarajan Premkumar, Goutam Chandra, Nam Suk Lee, Gurudas P. Mane, Seong Ju Hwang, Siva Umapathy, Ajayan Vinu

Research output: Contribution to journalArticlepeer-review

176 Scopus citations

Abstract

Mesoporous carbon nitrides (MCN) with C3N4 stoichiometry could find applications in fields ranging from catalysis, sensing, and adsorption–separation to biotechnology. The extension of the synthesis of MCN with different nitrogen contents and chemical structures promises access to a wider range of applications. Herein we prepare mesoporous C3N5 with a combined triazole and triazine framework via a simple self-assembly of 5-amino-1H-tetrazole (5-ATTZ). We are able to hybridize these nanostructures with graphene by using graphene–mesoporous-silica hybrids as a template to tune the electronic properties. DFT calculations and spectroscopic analyses clearly demonstrate that the C3N5 consists of 1 triazole and 2 triazine moieties. The triazole-based mesoporous C3N5 and its graphene hybrids are found to be highly active for oxygen reduction reaction (ORR) with a higher diffusion-limiting current density and a decreased overpotential than those of bulk g-C3N4.

Original languageEnglish
Pages (from-to)17135-17140
Number of pages6
JournalAngewandte Chemie - International Edition
Volume57
Issue number52
DOIs
StatePublished - 21 Dec 2018

Bibliographical note

Funding Information:
This work was supported by the program of the Discovery Early Career Researcher Award (DECRA) of the Australian Research Council (ARC) (grant number DE170101069). NEXAFS measurements were undertaken on the Soft X-ray Beamline at Australian Synchrotron. We acknowledge Mr. Peng Tan (Nanjing University) for his support to draw the schematic model of synthetic procedure.

Publisher Copyright:
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Keywords

  • N-rich carbon nitrides
  • electrocatalysts
  • oxygen reduction reaction
  • porous materials
  • triazoles

Fingerprint

Dive into the research topics of 'Ordered Mesoporous C3N5 with a Combined Triazole and Triazine Framework and Its Graphene Hybrids for the Oxygen Reduction Reaction (ORR)'. Together they form a unique fingerprint.

Cite this