Abstract
Following Matsumoto’s definition of continuous orbit equivalence for one-sided subshifts of finite type, we introduce the notion of orbit equivalence to canonically associated dynamical systems, called the limit dynamical systems, of self-similar groups. We show that the limit dynamical systems of two self-similar groups are orbit equivalent if and only if their associated Deaconu groupoids are isomorphic as topological groupoids. We also show that the equivalence class of Cuntz-Pimsner groupoids and the stably isomorphism class of Cuntz-Pimsner algebras of self-similar groups are invariants for orbit equivalence of limit dynamical systems.
Original language | English |
---|---|
Pages (from-to) | 383-399 |
Number of pages | 17 |
Journal | Journal of the Korean Mathematical Society |
Volume | 57 |
Issue number | 2 |
DOIs | |
State | Published - 2020 |
Keywords
- And phrases
- Limit dynamical system
- Orbit equivalence
- Self-similar group