Optimal likelihood-ratio multiple testing with application to Alzheimer's disease and questionable dementia Data analysis, statistics and modelling

Donghwan Lee, Hyejin Kang, Eunkyung Kim, Hyekyoung Lee, Heejung Kim, Yu Kyeong Kim, Youngjo Lee, Dong Soo Lee

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Background: Controlling the false discovery rate is important when testing multiple hypotheses. To enhance the detection capability of a false discovery rate control test, we applied the likelihood ratio-based multiple testing method in neuroimage data and compared the performance with the existing methods. Methods: We analysed the performance of the likelihood ratio-based false discovery rate method using simulation data generated under independent assumption, and positron emission tomography data of Alzheimer's disease and questionable dementia. We investigated how well the method detects extensive hypometabolic regions and compared the results to those of the conventional Benjamini Hochberg-false discovery rate method. Results: Our findings show that the likelihood ratio-based false discovery rate method can control the false discovery rate, giving the smallest false non-discovery rate (for a one-sided test) or the smallest expected number of false assignments (for a two-sided test). Even though we assumed independence among voxels, the likelihood ratio-based false discovery rate method detected more extensive hypometabolic regions in 22 patients with Alzheimer's disease, as compared to the 44 normal controls, than did the Benjamini Hochberg-false discovery rate method. The contingency and distribution patterns were consistent with those of previous studies. In 24 questionable dementia patients, the proposed likelihood ratio-based false discovery rate method was able to detect hypometabolism in the medial temporal region. Conclusions: This study showed that the proposed likelihood ratio-based false discovery rate method efficiently identifies extensive hypometabolic regions owing to its increased detection capability and ability to control the false discovery rate.

Original languageEnglish
Article number9
JournalBMC Medical Research Methodology
Volume15
Issue number1
DOIs
StatePublished - 30 Jan 2015

Bibliographical note

Publisher Copyright:
© 2015 Lee et al.; licensee BioMed Central.

Fingerprint

Dive into the research topics of 'Optimal likelihood-ratio multiple testing with application to Alzheimer's disease and questionable dementia Data analysis, statistics and modelling'. Together they form a unique fingerprint.

Cite this