Optical MEMS: From micromirrors to complex systems

Olav Solgaard, Asif A. Godil, Roger T. Howe, Luke P. Lee, Yves Alain Peter, Hans Zappe

Research output: Contribution to journalArticlepeer-review

120 Scopus citations

Abstract

Microelectromechanical system (MEMS) technology, and surface micromachining in particular, have led to the development of miniaturized optical devices with a substantial impact in a large number of application areas. The reason is the unique MEMS characteristics that are advantageous in fabrication, systems integration, and operation of micro-optical systems. The precision mechanics of MEMS, microfabrication techniques, and optical functionality all make possible a wide variety of movable and tunable mirrors, lenses, filters, and other optical structures. In these systems, electrostatic, magnetic, thermal, and pneumatic actuators provide mechanical precision and control. The large number of electromagnetic modes that can be accommodated by beam-steering micromirrors and diffractive optical MEMS, combined with the precision of these types of elements, is utilized in fiber-optical switches and filters, including dispersion compensators. The potential to integrate optics with electronics and mechanics is a great advantage in biomedical instrumentation, where the integration of miniaturized optical detection systems with microfluidics enables smaller, faster, more-functional, and cheaper systems. The precise dimensions and alignment of MEMS devices, combined with the mechanical stability that comes with miniaturization, make optical MEMS sensors well suited to a variety of challenging measurements. Micro-optical systems also benefit from the addition of nanostructures to the MEMS toolbox. Photonic crystals and microcavities, which represent the ultimate in miniaturized optical components, enable further scaling of optical MEMS.

Original languageEnglish
Article number6817527
Pages (from-to)517-538
Number of pages22
JournalJournal of Microelectromechanical Systems
Volume23
Issue number3
DOIs
StatePublished - Jun 2014

Keywords

  • Micro-optics
  • Microcavities.
  • Microlenses
  • Micromirrors
  • Optofluidics
  • Photonic crystals
  • Tunable optics

Fingerprint

Dive into the research topics of 'Optical MEMS: From micromirrors to complex systems'. Together they form a unique fingerprint.

Cite this