Abstract
Interest in platinum-chain complexes arose from their unusual oxidation states and physical properties. Despite their compositional diversity, isolation of crystalline chains has remained challenging. Here we report a simple crystallization technique that yields a series of dimer-based 1D platinum chains. The colour of the Pt2+ compounds can be switched between yellow, orange and blue. Spontaneous oxidation in air is used to form black Pt 2.33+ needles. The loss of one electron per double salt results in a metallic dz2 state, as supported by quantum chemical calculations, and displays conductivity of 11 S cm-1 at room temperature. This behaviour may open up a new avenue for controllable platinum chemistry.
Original language | English |
---|---|
Article number | 11950 |
Journal | Nature Communications |
Volume | 7 |
DOIs | |
State | Published - 20 Jun 2016 |
Bibliographical note
Funding Information:This was partly supported by the International Institute for Carbon Neutral Energy Research (WPI-I2CNER) sponsored by the World Premier International Research Center Initiative (WPI), MEXT, Japan. Computations benefited from access to the High Performance Computing Consortium, which is funded by EPSRC Grant EP/L000202. Additional support has been received from the Royal Society and the ERC (Grant 277757) and the NSF-funded XSEDE facilities (Grant ACI-1053575).