@article{2eafc47e449a4f3f9b474f874996692e,
title = "Observing gravitational-wave transient GW150914 with minimal assumptions",
abstract = "The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of ∼600 Mpc. In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass of ∼30 M and a total mass before merger of ∼70 M in the detector frame.",
author = "{(LIGO Scientific Collaboration and Virgo Collaboration)} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and Abernathy, {M. R.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and B. Allen and A. Allocca and Altin, {P. A.} and Anderson, {S. B.} and Anderson, {W. G.} and K. Arai and Araya, {M. C.} and Arceneaux, {C. C.} and Areeda, {J. S.} and N. Arnaud and Arun, {K. G.} and S. Ascenzi and G. Ashton and M. Ast and Aston, {S. M.} and P. Astone and P. Aufmuth and C. Aulbert and S. Babak and P. Bacon and Bader, {M. K.M.} and Baker, {P. T.} and F. Baldaccini and G. Ballardin and Ballmer, {S. W.} and Barayoga, {J. C.} and Barclay, {S. E.} and Barish, {B. C.} and D. Barker and F. Barone and C. Kim",
note = "Funding Information: National Science Centre of Poland; the European Commission; the Royal Society; the Scottish Funding Council; the Scottish Universities Physics Alliance; the Hungarian Scientific Research Fund (OTKA); the Lyon Institute of Origins (LIO); the National Research Foundation of Korea; Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation; the National Science and Engineering Research Council Canada; Canadian Institute for Advanced Research; the Brazilian Ministry of Science, Technology, and Innovation; Russian Foundation for Basic Research; the Leverhulme Trust; the Research Corporation; Ministry of Science and Technology (MOST), Taiwan; and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. This article has been assigned the document number LIGO-P1500229. Publisher Copyright: {\textcopyright} 2016 American Physical Society.",
year = "2016",
month = jun,
day = "7",
doi = "10.1103/PhysRevD.93.122004",
language = "English",
volume = "93",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Physical Society",
number = "12",
}