Nucleation and growth of 1B metal clusters on rutile TiO2(1 1 0): Atomic level understanding from first principles studies

Devina Pillay, Yun Wang, Gyeong S. Hwang

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Nanometer sized metal clusters dispersed on oxide supports often exhibit much higher activity than single-component metal catalysts. Their catalytic performance markedly depends on cluster size, shape and size distributions, along with support materials and support preparation methods. Supported metal nanoclusters can also easily rearrange and sinter during the course of thermally activated catalytic reactions even at moderate temperatures. An accurate assessment of the effects of cluster-support interactions on the growth, structure and reactivity of supported metal clusters, as well as the adsorbate-induced structural changes is therefore necessary to understand their catalytic performance under realistic operating conditions. The detailed understanding will also contribute to development of a new and reliable way to control their structural catalytic properties on the atomic scale. As a part of the effort to gain this atomic level understanding, we present our recent findings from density functional theory calculations, including: electronic structure of a reduced TiO2(1 1 0) surface and interactions between oxygen vacancies, with a brief introduction to the dynamics of oxygen molecules on the reduced surface, role of oxygen vacancies and oxygen adspecies in the nucleation of Au, Ag and Cu clusters.

Original languageEnglish
Pages (from-to)78-84
Number of pages7
JournalCatalysis Today
Volume105
Issue number1 SPEC. ISS.
DOIs
StatePublished - 15 Jul 2005

Keywords

  • Adsorbate
  • Cluster-support
  • Nanoclusters

Fingerprint

Dive into the research topics of 'Nucleation and growth of 1B metal clusters on rutile TiO2(1 1 0): Atomic level understanding from first principles studies'. Together they form a unique fingerprint.

Cite this