Novel three-dimensional scaffolds of poly(L -lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration

In Kyong Shim, Mi Ra Jung, Kyung Hwa Kim, Yang Jo Seol, Yoon Jeong Park, Won Ho Park, Seung Jin Lee

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

Poly(L-lactic acid) (PLLA) microfibrous scaffolds with three-dimensional (3D) structures were fabricated using an electrospinning technique with a subsequent mechanical expansion process. To achieve a 3D fibrous structure, the fusion at the contact points of the as-spun PLLA microfibers was avoided using an appropriate binary solvent system of methylene chloride and acetone. The solvent composition was optimized based on the solvent power, volatility, and viscosity (methylene chloride:acetone = 9:1 volume ratio). The final 3D structure of the electrospun scaffolds was obtained after mechanical expansion of the electrospun microfibrous mats. The pore sizes of the scaffolds were controlled by varying the degree of expansion of the nonbonded microfibrous mats, and they were in the range of several microns up to 400 μm. The 3D scaffolds were examined for their morphological properties and their potential use for the proliferation of osteoblasts. Generally recognized electrospun 2D nanofibrous membranes were also tested in order to compare the cell behaviors using different scaffold geometries. The 3D scaffolds demonstrated a high level of osteoblast proliferation (1.8-fold higher than nanofibrous membranes in a week). The osteoblasts actively penetrated the inside of the 3D scaffold and showed a spatial cell distribution, as confirmed by SEM and H&E staining, while a monolayer formed in the case of the 2D nanofibrous membranes with limited cell infiltration. In vivo results further showed that 3D electrospun microfibrous matrices were a favorable substrate for cell infiltration and bone formation after 2 and 4 weeks, using a rabbit calvarial defect model. In this study, the 3D microfibrous PLLA scaffolds fabricated using electrospinning techniques might be an innovative addition to tissue engineering applications.

Original languageEnglish
Pages (from-to)150-160
Number of pages11
JournalJournal of Biomedical Materials Research - Part B Applied Biomaterials
Volume95
Issue number1
DOIs
StatePublished - Oct 2010

Keywords

  • 3D scaffold
  • electrospinning
  • microfiber
  • poly(L-lactic acid)
  • tissue engineering

Fingerprint

Dive into the research topics of 'Novel three-dimensional scaffolds of poly(L -lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration'. Together they form a unique fingerprint.

Cite this