Non-Abelian phases in two-component ν=2/3 fractional quantum Hall states: Emergence of Fibonacci anyons

Zhao Liu, Abolhassan Vaezi, Kyungmin Lee, Eun Ah Kim

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Recent theoretical insights into the possibility of non-Abelian phases in ν=2/3 fractional quantum Hall states revived the interest in the numerical phase diagram of the problem. We investigate the effect of various kinds of two-body interlayer couplings on the (330) bilayer state and exactly solve the Hamiltonian for up to 14 electrons on sphere and torus geometries. We consider interlayer tunneling, short-ranged repulsive/attractive pseudopotential interactions, and Coulomb repulsion. We find a 6-fold ground-state degeneracy on the torus when the interlayer hollow-core interaction is dominant. To identify the topological nature of this phase we measure the orbital-cut entanglement spectrum, quasihole counting, topological entanglement entropy, and wave-function overlap. Comparing the numerical results to the theoretical predictions, we interpret this 6-fold ground-state degeneracy phase to be the non-Abelian bilayer Fibonacci state.

Original languageEnglish
Article number081102
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume92
Issue number8
DOIs
StatePublished - 5 Aug 2015

Bibliographical note

Publisher Copyright:
© 2015 American Physical Society.

Fingerprint

Dive into the research topics of 'Non-Abelian phases in two-component ν=2/3 fractional quantum Hall states: Emergence of Fibonacci anyons'. Together they form a unique fingerprint.

Cite this