TY - JOUR
T1 - nlmeVPC
T2 - Visual Model Diagnosis for the Nonlinear Mixed Effect Model
AU - Kang, Eun Hwa
AU - Ko, Myungji
AU - Lee, Eun Kyung
N1 - Publisher Copyright:
© (2023). All Rights Reserved.
PY - 2023/3
Y1 - 2023/3
N2 - A nonlinear mixed effects model is useful when the data are repeatedly measured within the same unit or correlated between units. Such models are widely used in medicine, disease mechanics, pharmacology, ecology, social science, psychology, etc. After fitting the nonlinear mixed effect model, model diagnostics are essential for verifying that the results are reliable. The visual predictive check (VPC) has recently been highlighted as a visual diagnostic tool for pharmacometric models. This method can also be applied to general nonlinear mixed effects models. However, functions for VPCs in existing R packages are specialized for pharmacometric model diagnosis, and are not suitable for general nonlinear mixed effect models. In this paper, we propose nlmeVPC, an R package for the visual diagnosis of various nonlinear mixed effect models. The nlmeVPC package allows for more diverse model diagnostics, including visual diagnostic tools that extend the concept of VPCs along with the capabilities of existing R packages.
AB - A nonlinear mixed effects model is useful when the data are repeatedly measured within the same unit or correlated between units. Such models are widely used in medicine, disease mechanics, pharmacology, ecology, social science, psychology, etc. After fitting the nonlinear mixed effect model, model diagnostics are essential for verifying that the results are reliable. The visual predictive check (VPC) has recently been highlighted as a visual diagnostic tool for pharmacometric models. This method can also be applied to general nonlinear mixed effects models. However, functions for VPCs in existing R packages are specialized for pharmacometric model diagnosis, and are not suitable for general nonlinear mixed effect models. In this paper, we propose nlmeVPC, an R package for the visual diagnosis of various nonlinear mixed effect models. The nlmeVPC package allows for more diverse model diagnostics, including visual diagnostic tools that extend the concept of VPCs along with the capabilities of existing R packages.
UR - http://www.scopus.com/inward/record.url?scp=85172869957&partnerID=8YFLogxK
U2 - 10.32614/RJ-2023-026
DO - 10.32614/RJ-2023-026
M3 - Article
AN - SCOPUS:85172869957
SN - 2073-4859
VL - 15
SP - 83
EP - 100
JO - R Journal
JF - R Journal
IS - 1
ER -