TY - JOUR
T1 - Neural Markers in Pediatric Bipolar Disorder and Familial Risk for Bipolar Disorder
AU - Wiggins, Jillian Lee
AU - Brotman, Melissa A.
AU - Adleman, Nancy E.
AU - Kim, Pilyoung
AU - Wambach, Caroline G.
AU - Reynolds, Richard C.
AU - Chen, Gang
AU - Towbin, Kenneth
AU - Pine, Daniel S.
AU - Leibenluft, Ellen
N1 - Publisher Copyright:
© 2016
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Objective Bipolar disorder (BD) is highly heritable. Neuroimaging studies comparing unaffected youth at high familial risk for BD (i.e., those with a first-degree relative with the disorder; termed “high-risk” [HR]) to “low-risk” (LR) youth (i.e., those without a first-degree relative with BD) and to patients with BD may help identify potential brain-based markers associated with risk (i.e., regions where HR+BD≠LR), resilience (HR≠BD+LR), or illness (BD≠HR+LR). Method During functional magnetic resonance imaging (fMRI), 99 youths (i.e., adolescents and young adults) aged 9.8 to 24.8 years (36 BD, 22 HR, 41 LR) performed a task probing face emotion labeling, previously shown to be impaired behaviorally in youth with BD and HR youth. Results We found three patterns of results. Candidate risk endophenotypes (i.e., where BD and HR shared deficits) included dysfunction in higher-order face processing regions (e.g., middle temporal gyrus, dorsolateral prefrontal cortex). Candidate resilience markers and disorder sequelae (where HR and BD, respectively, show unique alterations relative to the other two groups) included different patterns of neural responses across other regions mediating face processing (e.g., fusiform), executive function (e.g., inferior frontal gyrus), and social cognition (e.g., default network, superior temporal sulcus, temporo-parietal junction). Conclusion If replicated in longitudinal studies and with additional populations, neural patterns suggesting risk endophenotypes could be used to identify individuals at risk for BD who may benefit from prevention measures. Moreover, information about risk and resilience markers could be used to develop novel treatments that recruit neural markers of resilience and attenuate neural patterns associated with risk. Clinical trial registration information—Studies of Brain Function and Course of Illness in Pediatric Bipolar Disorder and Child and Adolescent Bipolar Disorder Brain Imaging and Treatment Study; http://clinicaltrials.gov/; NCT00025935 and NCT00006177.
AB - Objective Bipolar disorder (BD) is highly heritable. Neuroimaging studies comparing unaffected youth at high familial risk for BD (i.e., those with a first-degree relative with the disorder; termed “high-risk” [HR]) to “low-risk” (LR) youth (i.e., those without a first-degree relative with BD) and to patients with BD may help identify potential brain-based markers associated with risk (i.e., regions where HR+BD≠LR), resilience (HR≠BD+LR), or illness (BD≠HR+LR). Method During functional magnetic resonance imaging (fMRI), 99 youths (i.e., adolescents and young adults) aged 9.8 to 24.8 years (36 BD, 22 HR, 41 LR) performed a task probing face emotion labeling, previously shown to be impaired behaviorally in youth with BD and HR youth. Results We found three patterns of results. Candidate risk endophenotypes (i.e., where BD and HR shared deficits) included dysfunction in higher-order face processing regions (e.g., middle temporal gyrus, dorsolateral prefrontal cortex). Candidate resilience markers and disorder sequelae (where HR and BD, respectively, show unique alterations relative to the other two groups) included different patterns of neural responses across other regions mediating face processing (e.g., fusiform), executive function (e.g., inferior frontal gyrus), and social cognition (e.g., default network, superior temporal sulcus, temporo-parietal junction). Conclusion If replicated in longitudinal studies and with additional populations, neural patterns suggesting risk endophenotypes could be used to identify individuals at risk for BD who may benefit from prevention measures. Moreover, information about risk and resilience markers could be used to develop novel treatments that recruit neural markers of resilience and attenuate neural patterns associated with risk. Clinical trial registration information—Studies of Brain Function and Course of Illness in Pediatric Bipolar Disorder and Child and Adolescent Bipolar Disorder Brain Imaging and Treatment Study; http://clinicaltrials.gov/; NCT00025935 and NCT00006177.
KW - adolescence
KW - bipolar
KW - brain
KW - endophenotype
KW - risk
UR - http://www.scopus.com/inward/record.url?scp=85006340167&partnerID=8YFLogxK
U2 - 10.1016/j.jaac.2016.10.009
DO - 10.1016/j.jaac.2016.10.009
M3 - Article
C2 - 27993231
AN - SCOPUS:85006340167
SN - 0890-8567
VL - 56
SP - 67
EP - 78
JO - Journal of the American Academy of Child and Adolescent Psychiatry
JF - Journal of the American Academy of Child and Adolescent Psychiatry
IS - 1
ER -