Abstract
Long-term peritoneal dialysis is associated with progressive fibrosis of the peritoneum. Epithelial-mesenchymal transition (EMT) of mesothelial cells is an important mechanism involved in peritoneal fibrosis, and TGF-β1 is considered central in this process. However, targeting currently known TGF-β1-associated pathways has not proven effective to date. Therefore, there are still gaps in understanding the mechanisms underlying TGF-β1-associated EMT and peritoneal fibrosis. We conducted network-based integrated analysis of transcriptomic and proteomic data to systemically characterize the molecular signature of TGF-β1-stimulated human peritoneal mesothelial cells (HPMCs). To increase the power of the data, multiple expression datasets of TGF-β1-stimulated human cells were employed, and extended based on a human functional gene network. Dense network sub-modules enriched with differentially expressed genes by TGF-β1 stimulation were prioritized and genes of interest were selected for functional analysis in HPMCs. Through integrated analysis, ECM constituents and oxidative stress-related genes were shown to be the top-ranked genes as expected. Among top-ranked sub-modules, TNFAIP6, ZC3H12A, and NNT were validated in HPMCs to be involved in regulation of E-cadherin, ZO-1, fibronectin, and αSMA expression. The present data shows the validity of network-based integrated analysis in discovery of novel players in TGF-β1-induced EMT in peritoneal mesothelial cells, which may serve as new prognostic markers and therapeutic targets for peritoneal dialysis patients.
Original language | English |
---|---|
Article number | 1497 |
Journal | Scientific Reports |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - 1 Dec 2019 |
Bibliographical note
Publisher Copyright:© 2019, The Author(s).