Nanoscale structural switching of plasmonic nanograin layers on hydrogel colloidal monolayers for highly sensitive and dynamic SERS in water with areal signal reproducibility

Ji Eun Song, Hakseong Kim, Sang Wook Lee, Eun Chul Cho

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Developing substrates that enable both reproducible and highly sensitive Raman detection of trace amounts of molecules in aqueous systems remains a challenge, although these substrates are crucial in biomedicine and environmental sciences. To address this issue, we report spatially uniform plasmonic nanowrinkles formed by intimate contact between plasmonic nanograins on the surface of colloidal crystal monolayers. The Au or Ag nanograin layers coated on hydrogel colloidal crystal monolayers can reversibly wrinkle and unwrinkle according to changes in the water temperature. The reversible switches are directed by surface structural changes in the colloidal crystal monolayers, while the colloids repeat the hydration−dehydration process. The Au and Ag nanowrinkles are obtained upon hydration, thus enabling the highly reproducible detection of Raman probes in water at the nano- and picomolar levels, respectively, throughout the entire substrate area. Additionally, the reversible switching of the nanostructures in the plasmonic nanograin layers causes reversible dynamic changes in the corresponding Raman signals upon varying the water temperature.

Original languageEnglish
Pages (from-to)11259-11268
Number of pages10
JournalAnalytical Chemistry
Volume89
Issue number21
DOIs
StatePublished - 7 Nov 2017

Bibliographical note

Publisher Copyright:
© 2017 American Chemical Society.

Fingerprint

Dive into the research topics of 'Nanoscale structural switching of plasmonic nanograin layers on hydrogel colloidal monolayers for highly sensitive and dynamic SERS in water with areal signal reproducibility'. Together they form a unique fingerprint.

Cite this