Abstract
CZTS precursors [SLG/Mo (300 nm)/ZnS (460 nm)/SnS (480 nm)/Cu (240 nm)] were deposited by RF/DC sputtering, and then NaF layers (0, 15, and 30 nm) were grown by electron beam evaporation. The precursors were annealed in a furnace with Se metals at 590°C for 20 minutes. The final composition of the CZTSSe thin-films was of Cu/(Zn + Sn) ~ 0.88 and Zn/Sn ~ 1.05, with a metal S/Se ratio estimated at ~0.05. The CZTSSe thin-films have different NaF layer thicknesses in the range from 0 to 30 nm, achieving a ~3% conversion efficiency, and the CZTSSe thin-films contain ~3% of Na. Kelvin probe force microscopy was used to identify the local potential difference that varied according to the thickness of the NaF layer on the CZTSSe thin-films. The potential values at the grain boundaries were observed to increase as the NaF thickness increased. Moreover, the ratio of the positively charged GBs in the CZTSSe thin-films with an NaF layer was higher than that of pure CZTSSe thin-films. A positively charged potential was observed around the grain boundaries of the CZTSSe thin-films, which is a beneficial characteristic that can improve the performance of a device.
Original language | English |
---|---|
Article number | 27 |
Journal | Nano Convergence |
Volume | 1 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2014 |
Bibliographical note
Publisher Copyright:© 2014, Kim et al.; licensee Springer.
Keywords
- Cu2ZnSn(S,Se)4
- Grain boundary
- Kelvin probe force microscopy
- Na
- Surface potential