Abstract
Rapid and precise detection of pathogens is a critical step in the prevention and identification of emergencies related to health and biosafety as well as the clinical management of community-acquired urinary tract infections or sexually transmitted diseases. However, a conventional culture-based pathogen diagnostic method is time-consuming, permitting physicians to use antibiotics without ample clinical data. Here, we present a nanophotonic Light-driven Integrated cell lysis and polymerase chain reaction (PCR) on a chip with Gravity-driven cell enrichment Health Technology (LIGHT) for rapid precision detection of pathogens (<20 min). We created the LIGHT, which has the three functions of (1) selective enrichment of pathogens, (2) photothermal cell lysis, and (3) photonic PCR on a chip. We designed the gravity-driven cell enrichment via a nanoporous membrane on a chip that allows an effective bacterial enrichment of 40 000-fold from a 1 mL sample in 2 min. We established a light-driven photothermal lysis of preconcentrated bacteria within 1 min by designing the network of nanoplasmonic optical antenna on a chip for ultrafast light-to-heat conversion, created the nanoplasmonic optical antenna network-based ultrafast photonic PCR on a chip, and identified Escherichia coli. Finally, we demonstrated the end-point detection of up to 103 CFU/mL of E. coli in 10 min. We believe that our nanophotonic LIGHT will provide rapid and precise identification of pathogens in both developing and developed countries.
Original language | English |
---|---|
Pages (from-to) | 13866-13874 |
Number of pages | 9 |
Journal | ACS Nano |
Volume | 13 |
Issue number | 12 |
DOIs | |
State | Published - 24 Dec 2019 |
Bibliographical note
Publisher Copyright:Copyright © 2019 American Chemical Society.
Keywords
- lab-on-a-chip
- molecular diagnostics
- photothermal lysis
- plasmonics
- rapid photonic PCR
- sample enrichment
- urinary tract infection (UTI)