TY - JOUR
T1 - Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves
AU - Zhang, Huan
AU - Goh, Natalie S.
AU - Wang, Jeffrey W.
AU - Pinals, Rebecca L.
AU - González-Grandío, Eduardo
AU - Demirer, Gozde S.
AU - Butrus, Salwan
AU - Fakra, Sirine C.
AU - Del Rio Flores, Antonio
AU - Zhai, Rui
AU - Zhao, Bin
AU - Park, So Jung
AU - Landry, Markita P.
N1 - Funding Information:
We thank the Staskawicz Lab (University of California, Berkeley) for sharing mGFP N. benthamiana seeds, the Falk Lab (University of California, Davis) and the Scholthof Lab (Texas A&M University) for their provision of line 16C N. benthamiana seeds, and M.-J. Cho (Innovative Genomics Institute, Berkeley) for his assistance in N. benthamiana growth. We thank A. Avellan and A. Landolino for helpful discussions regarding sample preparation, and T. Cheng for assistance with performing autocorrelation function calculations. The authors recognize that majority of this work was performed on the territory of Huichin, the unceded land of the Ohlone people. We acknowledge support of a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), a Stanley Fahn PDF Junior Faculty Grant (award no. PF-JFA-1760), a Bakar Award, a Beckman Foundation Young Investigator Award, a USDA AFRI award, a USDA NIFA award and a Foundation for Food and Agriculture Research (FFAR) New Innovator Award (M.P.L.). This research was supported by the Office of Science (BER), US Department of Energy (DOE; grant no. DE-SC0020366, M.P.L.). M.P.L. is a Chan Zuckerberg Biohub investigator. N.S.G. is supported by a FFAR Fellowship. J.W.W. is a recipient of the National Science Foundation Graduate Research Fellowship. H.Z. acknowledges the start-up funding from Jinan University. S.-J.P. acknowledges support from the LG Yonam Foundation and National Research Foundation of Korea (grant no. NRF-2017R1A5A1015365). We acknowledge the support of UC Berkeley CRL Molecular Imaging Center, the UC Berkeley Electron Microscopy Lab and the Innovative Genomics Institute. We thank the ALS Diffraction and Imaging Program for support. This research used resources of the Advanced Light Source, a US DOE Office of Science User Facility (contract no. DE-AC02-05CH11231). We acknowledge the use of Servier Medical Art elements (http://smart.servier.com), licensed under a Creative Commons Attribution 3.0 Unported Licence.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2022/2
Y1 - 2022/2
N2 - Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5–20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.
AB - Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5–20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.
UR - http://www.scopus.com/inward/record.url?scp=85119675171&partnerID=8YFLogxK
U2 - 10.1038/s41565-021-01018-8
DO - 10.1038/s41565-021-01018-8
M3 - Article
C2 - 34811553
AN - SCOPUS:85119675171
SN - 1748-3387
VL - 17
SP - 197
EP - 205
JO - Nature Nanotechnology
JF - Nature Nanotechnology
IS - 2
ER -