Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features

Boram Jeong, Jiyoon Lee, Heejung Kim, Seungyeon Gwak, Yu Kyeong Kim, So Young Yoo, Donghwan Lee, Jung Seok Choi

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Internet gaming disorder (IGD) has become an important social and psychiatric issue in recent years. To prevent IGD and provide the appropriate intervention, an accurate prediction method for identifying IGD is necessary. In this study, we investigated machine learning methods of multimodal neuroimaging data including Positron Emission Tomography (PET), Electroencephalography (EEG), and clinical features to enhance prediction accuracy. Unlike the conventional methods which usually concatenate all features into one feature vector, we adopted a multiple-kernel support vector machine (MK-SVM) to classify IGD. We compared the prediction performance of standard machine learning methods such as SVM, random forest, and boosting with the proposed method in patients with IGD (N = 28) and healthy controls (N = 24). We showed that the prediction accuracy of the optimal MK-SVM using three kinds of modalities was much higher than other conventional machine learning methods, with the highest accuracy being 86.5%, the sensitivity 89.3%, and the specificity 83.3%. Furthermore, we deduced that clinical variables had the highest contribution to the optimal IGD prediction model and that the other two modalities were also indispensable. We found that more efficient integration of multimodal data through kernel combination could contribute to better performance of the prediction model. This study is a novel attempt to integrate each method from different sources and suggests that integrating each method, such as self-administrated reports, PET, and EEG, improves the prediction of IGD.

Original languageEnglish
Article number856510
JournalFrontiers in Neuroscience
Volume16
DOIs
StatePublished - 30 Jun 2022

Bibliographical note

Funding Information:
This work was supported by a grant from the National Research Foundation of Korea (Grant Nos. 2021R1F1A1046081 to J-SC and 2016R1A6A3A11931862 to HK). DL was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2021R1A2C1012865).

Publisher Copyright:
Copyright © 2022 Jeong, Lee, Kim, Gwak, Kim, Yoo, Lee and Choi.

Keywords

  • Positron Emission Tomography
  • electroencephalography
  • integrative analysis
  • internet gaming disorder
  • kernel support vector machine
  • multimodal

Fingerprint

Dive into the research topics of 'Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features'. Together they form a unique fingerprint.

Cite this