Multicentre validation of a machine learning model for predicting respiratory failure after noncardiac surgery

Hyun Kyu Yoon, Hyun Joo Kim, Yi Jun Kim, Hyeonhoon Lee, Bo Rim Kim, Hyongmin Oh, Hee Pyoung Park, Hyung Chul Lee

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: Postoperative respiratory failure is a serious complication that could benefit from early accurate identification of high-risk patients. We developed and validated a machine learning model to predict postoperative respiratory failure, defined as prolonged (>48 h) mechanical ventilation or reintubation after surgery. Methods: Easily extractable electronic health record (EHR) variables that do not require subjective assessment by clinicians were used. From EHR data of 307,333 noncardiac surgical cases, the model, trained with a gradient boosting algorithm, utilised a derivation cohort of 99,025 cases from Seoul National University Hospital (2013–9). External validation was performed using three separate cohorts A–C from different hospitals comprising 208,308 cases. Model performance was assessed by area under the receiver operating characteristic (AUROC) curve and area under the precision-recall curve (AUPRC), a measure of sensitivity and precision at different thresholds. Results: The model included eight variables: serum albumin, age, duration of anaesthesia, serum glucose, prothrombin time, serum creatinine, white blood cell count, and body mass index. Internally, the model achieved an AUROC of 0.912 (95% confidence interval [CI], 0.908–0.915) and AUPRC of 0.113. In external validation cohorts A, B, and C, the model achieved AUROCs of 0.879 (95% CI, 0.876–0.882), 0.872 (95% CI, 0.870–0.874), and 0.931 (95% CI, 0.925–0.936), and AUPRCs of 0.029, 0.083, and 0.124, respectively. Conclusions: Utilising just eight easily extractable variables, this machine learning model demonstrated excellent discrimination in both internal and external validation for predicting postoperative respiratory failure. The model enables personalised risk stratification and facilitates data-driven clinical decision-making.

Original languageEnglish
Pages (from-to)1304-1314
Number of pages11
JournalBritish Journal of Anaesthesia
Volume132
Issue number6
DOIs
StatePublished - Jun 2024

Bibliographical note

Publisher Copyright:
© 2024 British Journal of Anaesthesia

Keywords

  • machine learning
  • noncardiac surgery
  • postoperative complications
  • reintubation
  • respiratory failure

Fingerprint

Dive into the research topics of 'Multicentre validation of a machine learning model for predicting respiratory failure after noncardiac surgery'. Together they form a unique fingerprint.

Cite this