TY - JOUR
T1 - Molecular Photocatalytic Water Splitting by Mimicking Photosystems I and II
AU - Hong, Young Hyun
AU - Lee, Yong Min
AU - Nam, Wonwoo
AU - Fukuzumi, Shunichi
N1 - Publisher Copyright:
© 2022 American Chemical Society
PY - 2022/1/19
Y1 - 2022/1/19
N2 - In nature, water is oxidized by plastoquinone to evolve O2 and form plastoquinol in Photosystem II (PSII), whereas NADP+ is reduced by plastoquinol to produce NADPH and regenerate plastoquinone in Photosystem I (PSI), using homogeneous molecular photocatalysts. However, water splitting to evolve H2 and O2 in a 2:1 stoichiometric ratio has yet to be achieved using homogeneous molecular photocatalysts, remaining as one of the biggest challenges in science. Herein, we demonstrate overall water splitting to evolve H2 and O2 in a 2:1 ratio using a two liquid membranes system composed of two toluene phases, which are separated by a solvent mixture of water and trifluoroethanol (H2O/TFE, 3:1 v/v), with a glass membrane to combine PSI and PSII molecular models. A PSII model contains plastoquinone analogs [p-benzoquinone derivatives (X-Q)] in toluene and an iron(II) complex as a molecular oxidation catalyst in H2O/TFE (3:1 v/v), which evolves a stoichiometric amount of O2 and forms plastoquinol analogs (X-QH2) under photoirradiation. On the other hand, a PSI model contains nothing in toluene but contains X-QH2, 9-mesityl-10-methylacridinium ion (Acr+-Mes) as a photocatalyst, and a cobalt(III) complex as an H2 evolution catalyst in H2O/TFE (3:1 v/v), which evolves a stoichiometric amount of H2 and forms X-Q under photoirradiation. When a PSII model system is combined with a PSI model system with two glass membranes and two liquid membranes, photocatalytic water splitting with homogeneous molecular photocatalysts is achieved to evolve hydrogen and oxygen with the turnover number (TON) of >100.
AB - In nature, water is oxidized by plastoquinone to evolve O2 and form plastoquinol in Photosystem II (PSII), whereas NADP+ is reduced by plastoquinol to produce NADPH and regenerate plastoquinone in Photosystem I (PSI), using homogeneous molecular photocatalysts. However, water splitting to evolve H2 and O2 in a 2:1 stoichiometric ratio has yet to be achieved using homogeneous molecular photocatalysts, remaining as one of the biggest challenges in science. Herein, we demonstrate overall water splitting to evolve H2 and O2 in a 2:1 ratio using a two liquid membranes system composed of two toluene phases, which are separated by a solvent mixture of water and trifluoroethanol (H2O/TFE, 3:1 v/v), with a glass membrane to combine PSI and PSII molecular models. A PSII model contains plastoquinone analogs [p-benzoquinone derivatives (X-Q)] in toluene and an iron(II) complex as a molecular oxidation catalyst in H2O/TFE (3:1 v/v), which evolves a stoichiometric amount of O2 and forms plastoquinol analogs (X-QH2) under photoirradiation. On the other hand, a PSI model contains nothing in toluene but contains X-QH2, 9-mesityl-10-methylacridinium ion (Acr+-Mes) as a photocatalyst, and a cobalt(III) complex as an H2 evolution catalyst in H2O/TFE (3:1 v/v), which evolves a stoichiometric amount of H2 and forms X-Q under photoirradiation. When a PSII model system is combined with a PSI model system with two glass membranes and two liquid membranes, photocatalytic water splitting with homogeneous molecular photocatalysts is achieved to evolve hydrogen and oxygen with the turnover number (TON) of >100.
UR - http://www.scopus.com/inward/record.url?scp=85123750740&partnerID=8YFLogxK
U2 - 10.1021/jacs.1c11707
DO - 10.1021/jacs.1c11707
M3 - Article
C2 - 34990144
AN - SCOPUS:85123750740
SN - 0002-7863
VL - 144
SP - 695
EP - 700
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 2
ER -