TY - JOUR
T1 - Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin
AU - Jeong, Woojin
AU - Sung, Jun Park
AU - Chang, Tong Shin
AU - Lee, Duck Yeon
AU - Sue, Goo Rhee
PY - 2006/5/19
Y1 - 2006/5/19
N2 - Among many proteins with cysteine sulfinic acid (Cys-SO2H) residues, the sulfinic forms of certain peroxiredoxins (Prxs) are selectively reduced by sulfiredoxin (Srx) in the presence of ATP. All Srx enzymes contain a conserved cysteine residue. To elucidate the mechanism of the Srx-catalyzed reaction, we generated various mutants of Srx and examined their interaction with PrxI, their ATPase activity, and their ability to reduce sulfinic PrxI. Our results suggest that three surface-exposed amino acid residues, corresponding to Arg50, Asp57, and Asp79 of rat Srx, are critical for substrate recognition. The presence of the sulfinic form (but not the reduced form) of PrxI induces the conserved cysteine of Srx to take the γ-phosphate of ATP and then immediately transfers the phosphate to the sulfinic moiety of PrxI to generate a sulfinic acid phosphoryl ester (Prx-Cys-S(=O)OPO32-). This ester is reductively cleaved by a thiol molecule (RSH) such as GSH, thioredoxin, and dithiothreitol to produce a disulfide-S-monoxide (Prx-Cys-S(=O)-S-R). The disulfide-S-monoxide is further reduced through the oxidation of three thiol equivalents to complete the catalytic cycle and regenerate Prx-Cys-SH.
AB - Among many proteins with cysteine sulfinic acid (Cys-SO2H) residues, the sulfinic forms of certain peroxiredoxins (Prxs) are selectively reduced by sulfiredoxin (Srx) in the presence of ATP. All Srx enzymes contain a conserved cysteine residue. To elucidate the mechanism of the Srx-catalyzed reaction, we generated various mutants of Srx and examined their interaction with PrxI, their ATPase activity, and their ability to reduce sulfinic PrxI. Our results suggest that three surface-exposed amino acid residues, corresponding to Arg50, Asp57, and Asp79 of rat Srx, are critical for substrate recognition. The presence of the sulfinic form (but not the reduced form) of PrxI induces the conserved cysteine of Srx to take the γ-phosphate of ATP and then immediately transfers the phosphate to the sulfinic moiety of PrxI to generate a sulfinic acid phosphoryl ester (Prx-Cys-S(=O)OPO32-). This ester is reductively cleaved by a thiol molecule (RSH) such as GSH, thioredoxin, and dithiothreitol to produce a disulfide-S-monoxide (Prx-Cys-S(=O)-S-R). The disulfide-S-monoxide is further reduced through the oxidation of three thiol equivalents to complete the catalytic cycle and regenerate Prx-Cys-SH.
UR - http://www.scopus.com/inward/record.url?scp=33744919853&partnerID=8YFLogxK
U2 - 10.1074/jbc.M511082200
DO - 10.1074/jbc.M511082200
M3 - Article
C2 - 16565085
AN - SCOPUS:33744919853
SN - 0021-9258
VL - 281
SP - 14400
EP - 14407
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 20
ER -