Model studies on calcium-containing quinoprotein alcohol dehydrogenases. Catalytic role of Ca2+ for the oxidation of alcohols by coenzyme PQQ (4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3- f]quinoline-2,7,9-tricarboxylic acid)

Shinobu Itoh, Hirokatsu Kawakami, Shunichi Fukuzumi

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

Mechanistic studies on the action of calcium-containing quinoprotein alcohol dehydrogenases have been performed by using a series of PQQ model compounds in anhydrous organic media. The PQQ model compounds are shown to form 1:1 complexes with a series of alkaline earth metal ions by spectroscopic methods and theoretical calculations. The site of coordination of the PQQ molecule to the metal ions in solution is indicated to be the same as in the case of enzymatic systems. It has also been found that Ca2+ binds to the quinone most strongly among the alkaline earth metal ions. Formation of the C-5 hemiacetal derivatives with methanol, ethanol, and 2- propanol is also investigated spectrophotometrically to show that the alcohol addition to the quinone is enhanced in the presence of the metal ions. In this case as well, Ca2+ shows the highest efficiency for the enhancement of the C-5 hemiacetal formation. Addition of a strong base such as DBU into an MeCN solution containing the Ca2+ complex of the PQQ model compounds and the alcohols leads to the redox reactions to afford reduced PQQ derivatives and the corresponding aldehydes. On the basis of detailed kinetic studies on the redox reactions, including structural effects of PQQ analogues and metal ion effects, we propose the addition-oxidative elimination mechanism through the C-5 hemiacetal intermediate.

Original languageEnglish
Pages (from-to)6562-6571
Number of pages10
JournalBiochemistry
Volume37
Issue number18
DOIs
StatePublished - 5 May 1998

Fingerprint

Dive into the research topics of 'Model studies on calcium-containing quinoprotein alcohol dehydrogenases. Catalytic role of Ca2+ for the oxidation of alcohols by coenzyme PQQ (4,5-dihydro-4,5-dioxo-1H-pyrrolo[2,3- f]quinoline-2,7,9-tricarboxylic acid)'. Together they form a unique fingerprint.

Cite this