Abstract
We present a novel framework for contrastive learning of pixel-level representation using only unlabeled video. Without the need of ground-truth annotation, our method is capable of collecting well-defined positive correspondences by measuring their confidences and well-defined negative ones by appropriately adjusting their hardness during training. This allows us to suppress the adverse impact of ambiguous matches and prevent a trivial solution from being yielded by too hard or too easy negative samples. To accomplish this, we incorporate three different criteria that ranges from a pixel-level matching confidence to a video-level one into a bottom-up pipeline, and plan a curriculum that is aware of current representation power for the adaptive hardness of negative samples during training. With the proposed method, state-of-the-art performance is attained over the latest approaches on several video label propagation tasks.
| Original language | English |
|---|---|
| Title of host publication | Proceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
| Publisher | IEEE Computer Society |
| Pages | 1034-1044 |
| Number of pages | 11 |
| ISBN (Electronic) | 9781665445092 |
| DOIs | |
| State | Published - 2021 |
| Event | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 - Virtual, Online, United States Duration: 19 Jun 2021 → 25 Jun 2021 |
Publication series
| Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
|---|---|
| ISSN (Print) | 1063-6919 |
Conference
| Conference | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021 |
|---|---|
| Country/Territory | United States |
| City | Virtual, Online |
| Period | 19/06/21 → 25/06/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE