TY - JOUR
T1 - Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets
AU - Faustini, Marco
AU - Kim, Jun
AU - Jeong, Guan Young
AU - Kim, Jin Yeong
AU - Moon, Hoi Ri
AU - Ahn, Wha Seung
AU - Kim, Dong Pyo
PY - 2013/10/2
Y1 - 2013/10/2
N2 - Herein, we report a novel nanoliter droplet-based microfluidic strategy for continuous and ultrafast synthesis of metal-organic framework (MOF) crystals and MOF heterostructures. Representative MOF structures, such as HKUST-1, MOF-5, IRMOF-3, and UiO-66, were synthesized within a few minutes via solvothermal reactions with substantially faster kinetics in comparison to the conventional batch processes. The approach was successfully extended to the preparation of a demanding Ru3BTC2 structure that requires high-pressure hydrothermal synthesis conditions. Finally, three different types of core-shell MOF composites, i.e., Co3BTC2@Ni3BTC 2, MOF-5@diCH3-MOF-5, and Fe3O 4@ZIF-8, were synthesized by exploiting a unique two-step integrated microfluidic synthesis scheme in a continuous-flow mode. The synthesized MOF crystals were characterized by X-ray diffraction, scanning electron microscopy, and BET surface area measurements. In comparison with bare MOF-5, MOF-5@diCH3-MOF-5 showed enhanced structural stability in the presence of moisture, and the catalytic performance of Fe3O 4@ZIF-8 was examined using Knoevenagel condensation as a probe reaction. The microfluidic strategy allowed continuous fabrication of high-quality MOF crystals and composites exhibiting distinct morphological characteristics in a time-efficient manner and represents a viable alternative to the time-consuming and multistep MOF synthesis processes.
AB - Herein, we report a novel nanoliter droplet-based microfluidic strategy for continuous and ultrafast synthesis of metal-organic framework (MOF) crystals and MOF heterostructures. Representative MOF structures, such as HKUST-1, MOF-5, IRMOF-3, and UiO-66, were synthesized within a few minutes via solvothermal reactions with substantially faster kinetics in comparison to the conventional batch processes. The approach was successfully extended to the preparation of a demanding Ru3BTC2 structure that requires high-pressure hydrothermal synthesis conditions. Finally, three different types of core-shell MOF composites, i.e., Co3BTC2@Ni3BTC 2, MOF-5@diCH3-MOF-5, and Fe3O 4@ZIF-8, were synthesized by exploiting a unique two-step integrated microfluidic synthesis scheme in a continuous-flow mode. The synthesized MOF crystals were characterized by X-ray diffraction, scanning electron microscopy, and BET surface area measurements. In comparison with bare MOF-5, MOF-5@diCH3-MOF-5 showed enhanced structural stability in the presence of moisture, and the catalytic performance of Fe3O 4@ZIF-8 was examined using Knoevenagel condensation as a probe reaction. The microfluidic strategy allowed continuous fabrication of high-quality MOF crystals and composites exhibiting distinct morphological characteristics in a time-efficient manner and represents a viable alternative to the time-consuming and multistep MOF synthesis processes.
UR - http://www.scopus.com/inward/record.url?scp=84885148016&partnerID=8YFLogxK
U2 - 10.1021/ja4039642
DO - 10.1021/ja4039642
M3 - Article
AN - SCOPUS:84885148016
SN - 0002-7863
VL - 135
SP - 14619
EP - 14626
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 39
ER -