TY - JOUR
T1 - Microbial synthesis of medium-chain α,ω-dicarboxylic acids and ω-aminocarboxylic acids from renewable long-chain fatty acids
AU - Song, Ji Won
AU - Lee, Jung Hoo
AU - Bornscheuer, Uwe T.
AU - Park, Jin Byung
PY - 2014/5/26
Y1 - 2014/5/26
N2 - Biotransformation of long-chain fatty acids into medium-chain α,ω-dicarboxylic acids or ω-aminocarboxylic acids could be achieved with biocatalysts. This study presents the production of α,ω-dicarboxylic acids (e.g., C9, C11, C 12, C13) and ω-aminocarboxylic acids (e.g., C 11, C12, C13) directly from fatty acids (e.g., oleic acid, ricinoleic acid, lesquerolic acid) using recombinant Escherichia coli-based biocatalysts. ω-Hydroxycarboxylic acids, which were produced from oxidative cleavage of fatty acids via enzymatic reactions involving a fatty acid double bond hydratase, an alcohol dehydrogenase, a Baeyer-Villiger monooxygenase and an esterase, were then oxidized to α,ω- dicarboxylic acids by alcohol dehydrogenase (ADH, AlkJ) from Pseudomonas putida GPo1 or converted into ω-aminocarboxylic acids by a serial combination of ADH from P. putida GPo1 and an ω-transaminase of Silicibacter pomeroyi. The double bonds present in the fatty acids such as ricinoleic acid and lesquerolic acid were reduced by E. coli-native enzymes during the biotransformations. This study demonstrates that the industrially relevant building blocks (C9 to C13 saturated α,ω- dicarboxylic acids and ω-aminocarboxylic acids) can be produced from renewable fatty acids using biocatalysis.
AB - Biotransformation of long-chain fatty acids into medium-chain α,ω-dicarboxylic acids or ω-aminocarboxylic acids could be achieved with biocatalysts. This study presents the production of α,ω-dicarboxylic acids (e.g., C9, C11, C 12, C13) and ω-aminocarboxylic acids (e.g., C 11, C12, C13) directly from fatty acids (e.g., oleic acid, ricinoleic acid, lesquerolic acid) using recombinant Escherichia coli-based biocatalysts. ω-Hydroxycarboxylic acids, which were produced from oxidative cleavage of fatty acids via enzymatic reactions involving a fatty acid double bond hydratase, an alcohol dehydrogenase, a Baeyer-Villiger monooxygenase and an esterase, were then oxidized to α,ω- dicarboxylic acids by alcohol dehydrogenase (ADH, AlkJ) from Pseudomonas putida GPo1 or converted into ω-aminocarboxylic acids by a serial combination of ADH from P. putida GPo1 and an ω-transaminase of Silicibacter pomeroyi. The double bonds present in the fatty acids such as ricinoleic acid and lesquerolic acid were reduced by E. coli-native enzymes during the biotransformations. This study demonstrates that the industrially relevant building blocks (C9 to C13 saturated α,ω- dicarboxylic acids and ω-aminocarboxylic acids) can be produced from renewable fatty acids using biocatalysis.
KW - amination
KW - carboxylic acids
KW - enzyme catalysis
KW - fatty acids
KW - oxidation
UR - http://www.scopus.com/inward/record.url?scp=84901268986&partnerID=8YFLogxK
U2 - 10.1002/adsc.201300784
DO - 10.1002/adsc.201300784
M3 - Article
AN - SCOPUS:84901268986
SN - 1615-4150
VL - 356
SP - 1782
EP - 1788
JO - Advanced Synthesis and Catalysis
JF - Advanced Synthesis and Catalysis
IS - 8
ER -