TY - JOUR
T1 - Microbial community analysis of Deepwater Horizon oil-spill impacted sites along the Gulf coast using functional and phylogenetic markers
AU - Looper, Jessica K.
AU - Cotto, Ada
AU - Kim, Byung Yong
AU - Lee, Ming Kuo
AU - Liles, Mark R.
AU - Ní Chadhain, Sinéad M.
AU - Son, Ahjeong
PY - 2013/11
Y1 - 2013/11
N2 - We investigated the impact of the Deepwater Horizon oil spill on microbial communities in wetland sediment and seawater samples collected from sites along the Gulf shore. Based on GC/MS analysis, the sediment from Bay Jimmy, LA had detectable signs of hydrocarbon contamination, identified as n-alkanes in the GC/MS spectrum similar to that of the Deepwater Horizon source oil (MC-252). To identify changes in microbial assemblage structure and functional diversity in response to hydrocarbon contamination, five genes (bacterial 16S rRNA, Pseudomonas-specific 16S rRNA, alkB, P450, and PAH-RHDα) were selected based on the specific enzymes encoded by bacteria to degrade alkanes or polycyclic aromatic hydrocarbons. A quantitative PCR analysis revealed the presence of alkane and PAH-degrading genes in both contaminated and non-contaminated samples with no significant difference in gene content between contaminated and non-contaminated samples. However, the ribotype analysis based on pyrosequencing identified 17 bacteria genera known for their capacity to degrade hydrocarbons, including Mycobacterium, Novosphingobium, Parvibaculum, Pseudomonas, and Sphingomonas, in the contaminated sediment sample. Furthermore, the contaminated sample had a very high relative abundance of 16S rRNA gene sequences affiliated with the genus Parvibaculum, members of which have been characterized for their degradative abilities. These data suggest that specific bacterial taxa within the genus Parvibaculum have the capacity for hydrocarbon degradation and could use the hydrocarbons as a carbon and energy source, resulting in a dominant population in a hydrocarbon-contaminated soil. In summary, when exposed to the spilled oil, the distinct wetland microbial communities responded with decreased diversity and increased abundance of selective degradative species.
AB - We investigated the impact of the Deepwater Horizon oil spill on microbial communities in wetland sediment and seawater samples collected from sites along the Gulf shore. Based on GC/MS analysis, the sediment from Bay Jimmy, LA had detectable signs of hydrocarbon contamination, identified as n-alkanes in the GC/MS spectrum similar to that of the Deepwater Horizon source oil (MC-252). To identify changes in microbial assemblage structure and functional diversity in response to hydrocarbon contamination, five genes (bacterial 16S rRNA, Pseudomonas-specific 16S rRNA, alkB, P450, and PAH-RHDα) were selected based on the specific enzymes encoded by bacteria to degrade alkanes or polycyclic aromatic hydrocarbons. A quantitative PCR analysis revealed the presence of alkane and PAH-degrading genes in both contaminated and non-contaminated samples with no significant difference in gene content between contaminated and non-contaminated samples. However, the ribotype analysis based on pyrosequencing identified 17 bacteria genera known for their capacity to degrade hydrocarbons, including Mycobacterium, Novosphingobium, Parvibaculum, Pseudomonas, and Sphingomonas, in the contaminated sediment sample. Furthermore, the contaminated sample had a very high relative abundance of 16S rRNA gene sequences affiliated with the genus Parvibaculum, members of which have been characterized for their degradative abilities. These data suggest that specific bacterial taxa within the genus Parvibaculum have the capacity for hydrocarbon degradation and could use the hydrocarbons as a carbon and energy source, resulting in a dominant population in a hydrocarbon-contaminated soil. In summary, when exposed to the spilled oil, the distinct wetland microbial communities responded with decreased diversity and increased abundance of selective degradative species.
UR - http://www.scopus.com/inward/record.url?scp=84886695738&partnerID=8YFLogxK
U2 - 10.1039/c3em00200d
DO - 10.1039/c3em00200d
M3 - Article
C2 - 24061682
AN - SCOPUS:84886695738
SN - 2050-7887
VL - 15
SP - 2068
EP - 2079
JO - Environmental Sciences: Processes and Impacts
JF - Environmental Sciences: Processes and Impacts
IS - 11
ER -