Abstract
Compounds information such as Chemical Abstracts Service (CAS) registry number, hazards, and properties have been provided through Globally Harmonized System (GHS) based Material Safety Data Sheet (MSDS). This information can help users avoid hazardous compounds and handle chemicals in proper way. GHS specifies that hazards of compounds are categorized through animal testing (or in vivo testing), in vitro testing, epidemiological surveillance, and clinical trials. In this study, artificial intelligence (AI) is used to replace traditional approaches in predicting the toxicity of chemicals. A database of hazardous compounds is generated by data provided by the Ministry of Environment (ME), training and learning based on convolutional neural network (CNN) are carried out following data featurization. As a result, 90% of accuracy for CNN-based model is obtained using the image dataset. In contrast to the previous methods, the classification method based on CNN-based model in this study allows for the efficient discrimination of hazard chemicals without any additional tests.
Original language | English |
---|---|
Pages (from-to) | 59-65 |
Number of pages | 7 |
Journal | Current Applied Physics |
Volume | 41 |
DOIs | |
State | Published - Sep 2022 |
Bibliographical note
Funding Information:The authors would like to thank Dr. Kookjin Lee at Intel Corporation for providing valuable comments on the machnie learning algorithm and data analysis on this work. This research was supported by the Basic Research Program ( NRF-2022R1A2B5B01001640 , NRF-2021R1A6A1A10039823 ) and Global Research and Development Center Program ( NRF-2018K1A4A3A01064272 ) through the National Research Foundation of Korea (NRF).
Publisher Copyright:
© 2022 Korean Physical Society
Keywords
- Artificial intelligence
- Classification
- Deep learning
- GHS
- Hazardous compounds
- MSDS