Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid

Jae Ho Shin, Seok Hyun Park, Young Hoon Oh, Jae Woong Choi, Moon Hee Lee, Jae Sung Cho, Ki Jun Jeong, Jeong Chan Joo, James Yu, Si Jae Park, Sang Yup Lee

Research output: Contribution to journalArticlepeer-review

89 Scopus citations


Background: 5-Aminovaleric acid (5AVA) is an important five-carbon platform chemical that can be used for the synthesis of polymers and other chemicals of industrial interest. Enzymatic conversion of l-lysine to 5AVA has been achieved by employing lysine 2-monooxygenase encoded by the davB gene and 5-aminovaleramidase encoded by the davA gene. Additionally, a recombinant Escherichia coli strain expressing the davB and davA genes has been developed for bioconversion of l-lysine to 5AVA. To use glucose and xylose derived from lignocellulosic biomass as substrates, rather than l-lysine as a substrate, we previously examined direct fermentative production of 5AVA from glucose by metabolically engineered E. coli strains. However, the yield and productivity of 5AVA achieved by recombinant E. coli strains remain very low. Thus, Corynebacterium glutamicum, a highly efficient l-lysine producing microorganism, should be useful in the development of direct fermentative production of 5AVA using l-lysine as a precursor for 5AVA. Here, we report the development of metabolically engineered C. glutamicum strains for enhanced fermentative production of 5AVA from glucose. Results: Various expression vectors containing different promoters and origins of replication were examined for optimal expression of Pseudomonas putida davB and davA genes encoding lysine 2-monooxygenase and delta-aminovaleramidase, respectively. Among them, expression of the C. glutamicum codon-optimized davA gene fused with His6-Tag at its N-Terminal and the davB gene as an operon under a strong synthetic H36 promoter (plasmid p36davAB3) in C. glutamicum enabled the most efficient production of 5AVA. Flask culture and fed-batch culture of this strain produced 6.9 and 19.7 g/L (together with 11.9 g/L glutaric acid as major byproduct) of 5AVA, respectively. Homology modeling suggested that endogenous gamma-aminobutyrate aminotransferase encoded by the gabT gene might be responsible for the conversion of 5AVA to glutaric acid in recombinant C. glutamicum. Fed-batch culture of a C. glutamicum gabT mutant-harboring p36davAB3 produced 33.1 g/L 5AVA with much reduced (2.0 g/L) production of glutaric acid. Conclusions:Corynebacterium glutamicum was successfully engineered to produce 5AVA from glucose by optimizing the expression of two key enzymes, lysine 2-monooxygenase and delta-aminovaleramidase. In addition, production of glutaric acid, a major byproduct, was significantly reduced by employing C. glutamicum gabT mutant as a host strain. The metabolically engineered C. glutamicum strains developed in this study should be useful for enhanced fermentative production of the novel C5 platform chemical 5AVA from renewable resources.

Original languageEnglish
Article number174
JournalMicrobial Cell Factories
Issue number1
StatePublished - 7 Oct 2016

Bibliographical note

Funding Information:
This work was supported the Technology Development Program to solve climate changes (Systems Metabolic Engineering for Biorefiner-ies) (NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science, ICT and Future Planning (MSIP) through the National Research Foundation (NRF) of Korea and NRF grant funded by the MSIP (NRF-2016R1A2B4008707).

Publisher Copyright:
© 2016 The Author(s).


  • 5-Aminovaleric acid
  • Corynebacterium glutamicum
  • Glutaric acid
  • Metabolic engineering
  • l-Lysine


Dive into the research topics of 'Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid'. Together they form a unique fingerprint.

Cite this