TY - JOUR
T1 - Memory-Efficient Algorithm for Scalar Multiplications on Twisted Edwards Curves for Isogeny-Based Cryptosystems
AU - Eom, Sookyung
AU - Lee, Hyang Sook
AU - Song, Kyunghwan
N1 - Publisher Copyright:
© 2022 Sookyung Eom et al.
PY - 2022
Y1 - 2022
N2 - Scalar multiplications are considered an essential aspect of implementations of isogeny-based cryptography. The efficiency of scalar multiplication depends on the equation of the underlying elliptic curves and the addition chain employed. Bos and Friedberger recently stated that, for larger scalar multiplication, addition-subtraction chains will become more useful for twisted Edwards curves because of the differential restriction on Montgomery curves in the setting of isogeny-based cryptosystem. Motivated by these comments, we attempt to increase the efficiency of scalar multiplication in twisted Edwards curves in terms of the memory of algorithms. In this paper, we present a double-base addition-subtraction chain algorithm with memory efficiency for scalar multiplication. The memory usage of this part is Ologn2/loglogn, which is better than the result of the tree-based approach, which is Ologn2.
AB - Scalar multiplications are considered an essential aspect of implementations of isogeny-based cryptography. The efficiency of scalar multiplication depends on the equation of the underlying elliptic curves and the addition chain employed. Bos and Friedberger recently stated that, for larger scalar multiplication, addition-subtraction chains will become more useful for twisted Edwards curves because of the differential restriction on Montgomery curves in the setting of isogeny-based cryptosystem. Motivated by these comments, we attempt to increase the efficiency of scalar multiplication in twisted Edwards curves in terms of the memory of algorithms. In this paper, we present a double-base addition-subtraction chain algorithm with memory efficiency for scalar multiplication. The memory usage of this part is Ologn2/loglogn, which is better than the result of the tree-based approach, which is Ologn2.
UR - http://www.scopus.com/inward/record.url?scp=85129940703&partnerID=8YFLogxK
U2 - 10.1155/2022/3846369
DO - 10.1155/2022/3846369
M3 - Article
AN - SCOPUS:85129940703
SN - 1024-123X
VL - 2022
JO - Mathematical Problems in Engineering
JF - Mathematical Problems in Engineering
M1 - 3846369
ER -