Mechanisms of arctic surface air temperature change in response to the Madden-Julian oscillation

Changhyun Yoo, Sukyoung Lee, Steven B. Feldstein

Research output: Contribution to journalArticlepeer-review

134 Scopus citations


Using lagged composites and projections with the thermodynamic energy equation, in this study the mechanisms that drive the boreal winter Arctic surface air temperature (SAT) change associated with the Madden-Julian oscillation (MJO) are investigated. The Wheeler and Hendon MJO index, which divides the MJO into 8 phases, where phase 1 (phase 5) corresponds to reduced (enhanced) convection over the Maritime Continent and western Pacific Ocean, is used. It is shown that the more zonally localized (uniform) tropical convective heating associated with MJO phase 5 (phase 1) leads to enhanced (reduced) excitation of poleward-propagatingRossbywaves,which contribute toArcticwarming (cooling).Adiabaticwarming/cooling, eddy heat flux, and the subsequent change in downward infrared radiation (IR) flux are found to be important for the Arctic SAT change. The adiabatic warming/cooling initiates the Arctic SAT change, however, subsequent eddy heat fluxmakes a greater contribution. The resulting SAT change is further amplified by alteration in downward IR. It is shown that changes in surface sensible and latent heat fluxes oppose the contribution by the above processes.

Original languageEnglish
Pages (from-to)5777-5790
Number of pages14
JournalJournal of Climate
Issue number17
StatePublished - Sep 2012


  • Atmospheric circulation
  • Large-scale motions
  • Madden-Julian oscillation
  • Rossby waves


Dive into the research topics of 'Mechanisms of arctic surface air temperature change in response to the Madden-Julian oscillation'. Together they form a unique fingerprint.

Cite this