Macropinocytosis-targeted peptide-docetaxel conjugate for bystander pancreatic cancer treatment

Young Seok Cho, Hanhee Cho, Ha Rin Kim, Seong Jin Park, Joo Hye Yeo, Yoon Gun Ko, Jinu Lee, Sang Yoon Kim, Kwangmeyung Kim, Youngro Byun

Research output: Contribution to journalArticlepeer-review

Abstract

Oncogenic Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are highly prevalent in pancreatic ductal adenocarcinoma (PDAC) and have garnered attention as potential targets for targeted therapies, such as KRAS inhibitors. However, the limited therapeutic efficacy of KRAS allele-specific inhibitors necessitate an efficient pan-KRAS cancer cell killing strategy. Here, we have examined enhanced macropinocytosis pathway in KRAS mutant cancer cells and report improved intracellular delivery of albumin-based therapeutics. We further established an albumin-binding peptide-docetaxel conjugate platform (MPD3), which has a caspase-3 cleavable feature, for macropinocytosis-targeted bystander payload delivery and realization of bystander killing of pan-KRAS cancer cells, complemented with caspase-3 mediated activation of MPD3 to bolster tumoral accumulation of cytotoxic payloads. Utilization of in vitro co-culture system of pan-KRAS cancer cells and pharmacodynamic marker staining revealed potent bystander killing effects of MPD3, highlighting MPD3 as an efficient delivery platform against pan-KRAS cancer. Moreover, MPD3 elicited robust anti-tumor activities in both local and liver metastatic PDAC tumor models in mice. Overall, this work establishes a paradigm for developing translational pan-KRAS cancer treatment and broadens the applicability of albumin binding peptide-drug conjugate against albumin-metabolism enriched cancers.

Original languageEnglish
Pages (from-to)829-841
Number of pages13
JournalJournal of Controlled Release
Volume376
DOIs
StatePublished - Dec 2024

Bibliographical note

Publisher Copyright:
© 2024

Keywords

  • Bystander killing
  • KRAS mutation
  • Macropinocytosis
  • Pancreatic cancer
  • Peptide-drug conjugate

Fingerprint

Dive into the research topics of 'Macropinocytosis-targeted peptide-docetaxel conjugate for bystander pancreatic cancer treatment'. Together they form a unique fingerprint.

Cite this