Abstract
Objective: This nested case–control study aimed to investigate the effects of VEGFA poly-morphisms on the development of bisphosphonate-related osteonecrosis of the jaw (BRONJ) in women with osteoporosis. Methods: Eleven single nucleotide polymorphisms (SNPs) of the VEGFA were assessed in a total of 125 patients. Logistic regression was performed for multivariable analy-sis. Machine learning algorithms, namely, fivefold cross-validated multivariate logistic regression, elastic net, random forest, and support vector machine, were developed to predict risk factors for BRONJ occurrence. Area under the receiver-operating curve (AUROC) analysis was conducted to assess clinical performance. Results: The VEGFA rs881858 was significantly associated with BRONJ development. The odds of BRONJ development were 6.45 times (95% CI, 1.69–24.65) higher among carriers of the wild-type rs881858 allele compared with variant homozygote carriers after adjusting for covariates. Additionally, variant homozygote (GG) carriers of rs10434 had higher odds than those with wild-type allele (OR, 3.16). Age ≥ 65 years (OR, 16.05) and bisphosphonate exposure ≥ 36 months (OR, 3.67) were also significant risk factors for BRONJ occurrence. AUROC values were higher than 0.78 for all machine learning methods employed in this study. Conclusion: Our study showed that the BRONJ occurrence was associated with VEGFA polymorphisms in osteoporotic women.
Original language | English |
---|---|
Article number | 541 |
Journal | Journal of Personalized Medicine |
Volume | 11 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2021 |
Bibliographical note
Publisher Copyright:© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Bisphosphonate-related osteonecrosis
- Gene polymorphism
- Machine learning
- VEGFA