Abstract
Fabry disease is a lysosomal storage disorder characterized by the lysosomal accumulations of glycosphingolipids in a variety of cytotypes, which include endothelial cells. The disease is inherited and originates from an error in glycosphingolipid catabolism caused by insufficient α-galactosidase A activity, which causes uncontrolled progressive storage of intracellular globotriaosylceramide (Gb3) in the vasculature and extracellular accumulation of lyso-Gb3 (a deacetylated soluble form of Gb3). Necrosis can lead to inflammation, which exacerbates necrosis and creates a positive feedback loop that triggers necroinflammation. However, the role played by necroptosis, a form of programmed necrotic cell death, in the cell-to-cell inflammatory reaction between epithelial and endothelial cells is unclear. Thus, the present study was undertaken to determine whether lyso-Gb3 induces necroptosis and whether necroptosis inhibition protects endothelial dysfunction against lyso-Gb3 inflamed retinal pigment epithelial cells. We found lyso-Gb3 induced necroptosis of a retinal pigment epithelial cell line (ARPE-19) in an autophagy-dependent manner and that conditioned media (CM) from ARPE-19 cells treated with lyso-Gb3 induced the necroptosis, inflammation, and senescence of human umbilical vein endothelial cells. In addition, a pharmacological study showed CM from lyso-Gb3 treated ARPE-19 cells induced endothelial necroptosis, inflammation, and senescence were significantly inhibited by an autophagy inhibitor (3-MA) and by two necroptosis inhibitors (necrostatin and GSK-872), respectively. These results demonstrate lyso-Gb3 induces necroptosis via autophagy and suggest that lyso-Gb3 inflamed retinal pigment epithelial cells trigger endothelial dysfunction via the autophagy-dependent necroptosis pathway. This study suggests the involvement of a novel autophagy-dependent necroptosis pathway in the regulation of endothelial dysfunction in Fabry disease.
Original language | English |
---|---|
Pages (from-to) | 231-240 |
Number of pages | 10 |
Journal | Korean Journal of Physiology and Pharmacology |
Volume | 27 |
Issue number | 3 |
DOIs | |
State | Published - May 2023 |
Bibliographical note
Publisher Copyright:© 2023 Korean Physiological Soc. and Korean Soc. of Pharmacology. All rights reserved.
Keywords
- Autophagy
- Cellular senescence
- Glycosphingolipids
- Inflammation
- Necroptosis