Abstract
An organic phototransistor memory is presented with a photoactive dielectric layer of 6-[4'-(N,N-diphenylamino)phenyl]-3-ethoxycarbonylcoumarin (DPA-CM) doped into poly(methyl methacrylate) (PMMA) and an electron-trapping layer of poly(perfluoroalkenyl vinyl ether) (CYTOP). The dielectric gate layer functioned as an insulator in the dark and as a charge generator and/or conductive layer under photoirradiation, which resulted in a low program voltage and an operation with long-term stability. A shift in the phototransistor threshold voltage could be reversibly tuned from −5.8 to 6.2 V with a low switching voltage (≤8 V) under UV irradiation. Programmed/erased states were obtained by applying gate pulse voltages of −8/5 V under UV irradiation from an external light source. The phototransistor memory exhibited high stability with a large on/off current ratio of ~105 for a retention time up to 2 × 106 s with a reliability greater than 103 programming/erasing testing cycles. These findings introduce a new approach for organic phototransistor non-volatile memory with high stability.
Original language | English |
---|---|
Article number | 105505 |
Journal | Organic Electronics |
Volume | 77 |
DOIs | |
State | Published - Feb 2020 |
Keywords
- Controllable threshold voltage
- Electron-trapping
- Long retention time
- Organic phototransistor memory
- Photoactive gate dielectric
- Programmable organic phototransistor