Abstract
Understanding and predicting warm season (May-October) droughts is critically important in South Korea for agricultural productivity and water resource management. Using a 6-month standardized precipitation index ending in October (SPI6_Oct), we investigate the interannual variability of warm season droughts and the related large-scale atmospheric circulations for the most recent 20-yr period (1995-2014). Cyclonic (anticyclonic) circulations to the east of Japan (in the North Pacific) tend to induce warm season droughts (wetness) by suppressing (enhancing) moist water transport from the south of the Korean Peninsula. These circulation patterns to the east of Japan are linked to a barotropic Rossby wave-like teleconnection pattern from the North Atlantic to East Asia, which is found to be responsible for the interannual variability of SPI6_Oct. This teleconnection pattern is highly correlated with the difference in sea surface temperature (SST) between theNorwegian Sea and the Barents Sea (referred to asNA_dipole) in January-March (r50.68), which modulates the snow depth over the Ural Mountains in spring and the sea ice concentration over the Barents Sea during the entire warm season. Two drought prediction models, an empirical model and a hybrid machine learning model, are developed and tested for their predictive skills for South Korea. An empirical prediction model using NA_dipole as one of the predictors is found to accurately capture the interannual variability of SPI6_Oct (r2 5 53%). NA_dipole is found to improve the predictive skills of the hybrid machine learning drought predictionmodel, especially for longer lead times.Our results emphasize the significant role of North Atlantic SST anomalies in warm season medium-range droughts in South Korea.
Original language | English |
---|---|
Pages (from-to) | 4659-4677 |
Number of pages | 19 |
Journal | Journal of Climate |
Volume | 33 |
Issue number | 11 |
DOIs | |
State | Published - 1 Jun 2020 |
Bibliographical note
Funding Information:Acknowledgments. This research was supported by the APEC Climate Center. CY is supported by the Korea Polar Research Institute through Grant PN19081.
Publisher Copyright:
© 2020 American Meteorological Society. All rights reserved.