Abstract
Lonchocarpine is a phenylpropanoid compound isolated from Abrus precatorius that has anti-bacterial,anti-inflammatory,antiproliferative,and antiepileptic activities. In the present study,we investigated the antioxidant effects of lonchocarpine in brain glial cells and analyzed its molecular mechanisms. We found that lonchocarpine suppressed reactive oxygen species (ROS) production and cell death in hydrogen peroxide-treated primary astrocytes. In addition,lonchocarpine increased the expression of antioxidant enzymes,such as heme oxygenase-1 (HO-1),NAD(P)H:quinone oxidoreductase 1 (NQO1),and manganese superoxide dismutase (MnSOD),which are all under the control of Nrf2/antioxidant response element (ARE) signaling. Further,mechanistic studies showed that lonchocarpine increases the nuclear translocation and DNA binding of Nrf2 to ARE as well as ARE-mediated transcriptional activities. Moreover,lonchocarpine increased the phosphorylation of AMP-activated protein kinase (AMPK) and three types of mitogen-activated protein kinases (MAPKs). By treating astrocytes with each signaling pathway-specific inhibitor,AMPK,c-jun N-terminal protein kinase (JNK),and p38 MAPK were identified to be involved in lonchocarpine-induced HO-1 expression and ARE-mediated transcriptional activities. Therefore,lonchocarpine may be a potential therapeutic agent for neurodegenerative diseases that are associated with oxidative stress.
Original language | English |
---|---|
Pages (from-to) | 581-588 |
Number of pages | 8 |
Journal | Biomolecules and Therapeutics |
Volume | 24 |
Issue number | 6 |
DOIs | |
State | Published - Nov 2016 |
Bibliographical note
Publisher Copyright:© 2016 The Korean Society of Applied Pharmacology.
Keywords
- AMPK
- Antioxidant enzymes
- Astrocytes
- Lonchocarpine
- MAPK
- Nrf2/ARE signaling