TY - JOUR
T1 - Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation
AU - Venugopal, Senthil K.
AU - Jiang, Joy
AU - Kim, Tae Hun
AU - Li, Yong
AU - Wang, Si Si
AU - Torok, Natalie J.
AU - Wu, Jian
AU - Zern, Mark A.
PY - 2010/1
Y1 - 2010/1
N2 - Activation of hepatic stellate cells (HSC) results in their proliferation and in the secretion of extracellular matrix (ECM) proteins, which leads to hepatic fibrosis. microRNAs (miRNAs) have been shown to regulate various cell functions, such as proliferation, differentiation, and apoptosis. Hence, we have analyzed the miRNAs that were differentially expressed in HSC isolated from sham-operated and bile duct-ligated rats. Expression of two miRNAs, miRNA-150 and miRNA-194, was reduced in HSC isolated from fibrotic rats compared with sham-operated animals. These two miRNAs were overexpressed in LX-2 cells, and their ability to inhibit cell proliferation, the expression of smooth muscle α-actin (SMA), a marker for activation, and collagen type I, a marker for ECM secretion, was determined. Overexpression of these two miRNAs resulted in a significant inhibition of proliferation (P < 0.05) and reduced SMA and collagen I levels compared with either untreated cells or nonspecific miRNA-expressing cells. Next, the protein targets of these two miRNAs were found using bioinformatics approaches. C-myb was found to be a target for miRNA-150, and rac 1 was found to be one of the targets for miRNA-194. Therefore, we studied the expression of these two proteins by overexpressing these two miRNAs in LX-2 cells and found that overexpression of miRNA-150 and miRNA-194 resulted in a significant inhibition of c-myb and rac 1 expression, respectively. We conclude that both miRNA-150 and miRNA-194 inhibit HSC activation and ECM production, at least in part, via inhibition of c-myb and rac 1 expression.
AB - Activation of hepatic stellate cells (HSC) results in their proliferation and in the secretion of extracellular matrix (ECM) proteins, which leads to hepatic fibrosis. microRNAs (miRNAs) have been shown to regulate various cell functions, such as proliferation, differentiation, and apoptosis. Hence, we have analyzed the miRNAs that were differentially expressed in HSC isolated from sham-operated and bile duct-ligated rats. Expression of two miRNAs, miRNA-150 and miRNA-194, was reduced in HSC isolated from fibrotic rats compared with sham-operated animals. These two miRNAs were overexpressed in LX-2 cells, and their ability to inhibit cell proliferation, the expression of smooth muscle α-actin (SMA), a marker for activation, and collagen type I, a marker for ECM secretion, was determined. Overexpression of these two miRNAs resulted in a significant inhibition of proliferation (P < 0.05) and reduced SMA and collagen I levels compared with either untreated cells or nonspecific miRNA-expressing cells. Next, the protein targets of these two miRNAs were found using bioinformatics approaches. C-myb was found to be a target for miRNA-150, and rac 1 was found to be one of the targets for miRNA-194. Therefore, we studied the expression of these two proteins by overexpressing these two miRNAs in LX-2 cells and found that overexpression of miRNA-150 and miRNA-194 resulted in a significant inhibition of c-myb and rac 1 expression, respectively. We conclude that both miRNA-150 and miRNA-194 inhibit HSC activation and ECM production, at least in part, via inhibition of c-myb and rac 1 expression.
KW - C-myb
KW - MicroRNA-150
KW - Microrna-194
KW - Rac 1
UR - http://www.scopus.com/inward/record.url?scp=73549111067&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00220.2009
DO - 10.1152/ajpgi.00220.2009
M3 - Article
C2 - 19892940
AN - SCOPUS:73549111067
SN - 0193-1857
VL - 298
SP - G101-G106
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 1
ER -