TY - JOUR
T1 - Limited forearm motion compensated by thoracohumeral kinematics when performing tasks requiring pronation and supination
AU - Pereira, Barry P.
AU - Thambyah, Ashvin
AU - Lee, Taeyong
PY - 2012/5
Y1 - 2012/5
N2 - This study investigates the altered thoracohumeral kinematics when forearm rotation is restricted while performing five activities requiring pronation and supination. Two splints simulated both a fixed-supinated or fixed-neutral forearm in six healthy subjects; the three-dimensional coupled relationship among motion about the forearm, elbow, and shoulder were analyzed. In using a screwdriver, the normal range of forearm rotation of 77.6° (SD = 30.8°) was reduced in the fixed-supinated to 11.3° (SD = 2.9°) and fixed-neutral to 18.2° (SD = 6.2°). This restriction from the fixed-supinated and fixed-neutral forearms was compensated at the shoulder by a significant increase in the total range of (1) ad/abduction by 57.3° and 62.8° respectively (p < .001), (2) forward-reverse flexion (24.3° and 18.2° respectively; p < .05) and (3) internal-external rotation (37.1° and 44.2° respectively; p < .001). A similar result was demonstrated for the doorknob activity. The elbow did not significantly contribute to forearm rotation (p = .14), and is believed to be due to the elbow axis being orthogonal and oblique to the forearm axis. For open kinetic-chain activities, with a fixed-supinated forearm performing there was a significant coupled increase in ad/abduction (p < .05) and int/external rotation (p < .05) for the phone and feeding tasks, with the phone task also having a significantly increased forward shoulder flexion (p < .05). For the fixed-neutral forearm, significant compensatory movement was only seen in the feeding task with increased ad/abduction and internal-external shoulder rotation (p < .05) and the card inserting task with increased ad/abduction and forward-reverse shoulder flexion. Limited forearm function requires compensatory motion from adjacent joints to perform activities that require pronation and supination. This study quantifies the compensatory mechanism about the shoulder in a forearm limited in prosupination.
AB - This study investigates the altered thoracohumeral kinematics when forearm rotation is restricted while performing five activities requiring pronation and supination. Two splints simulated both a fixed-supinated or fixed-neutral forearm in six healthy subjects; the three-dimensional coupled relationship among motion about the forearm, elbow, and shoulder were analyzed. In using a screwdriver, the normal range of forearm rotation of 77.6° (SD = 30.8°) was reduced in the fixed-supinated to 11.3° (SD = 2.9°) and fixed-neutral to 18.2° (SD = 6.2°). This restriction from the fixed-supinated and fixed-neutral forearms was compensated at the shoulder by a significant increase in the total range of (1) ad/abduction by 57.3° and 62.8° respectively (p < .001), (2) forward-reverse flexion (24.3° and 18.2° respectively; p < .05) and (3) internal-external rotation (37.1° and 44.2° respectively; p < .001). A similar result was demonstrated for the doorknob activity. The elbow did not significantly contribute to forearm rotation (p = .14), and is believed to be due to the elbow axis being orthogonal and oblique to the forearm axis. For open kinetic-chain activities, with a fixed-supinated forearm performing there was a significant coupled increase in ad/abduction (p < .05) and int/external rotation (p < .05) for the phone and feeding tasks, with the phone task also having a significantly increased forward shoulder flexion (p < .05). For the fixed-neutral forearm, significant compensatory movement was only seen in the feeding task with increased ad/abduction and internal-external shoulder rotation (p < .05) and the card inserting task with increased ad/abduction and forward-reverse shoulder flexion. Limited forearm function requires compensatory motion from adjacent joints to perform activities that require pronation and supination. This study quantifies the compensatory mechanism about the shoulder in a forearm limited in prosupination.
KW - Activities of daily living
KW - Compensatory mechanisms
KW - Forearm biomechanics
KW - Limited forearm rotation
KW - Shoulder kinematics
UR - http://www.scopus.com/inward/record.url?scp=84862836613&partnerID=8YFLogxK
U2 - 10.1123/jab.28.2.127
DO - 10.1123/jab.28.2.127
M3 - Article
C2 - 21908894
AN - SCOPUS:84862836613
SN - 1065-8483
VL - 28
SP - 127
EP - 138
JO - Journal of Applied Biomechanics
JF - Journal of Applied Biomechanics
IS - 2
ER -