Light-Triggered PROTAC Nanoassemblies for Photodynamic IDO Proteolysis in Cancer Immunotherapy

Jiwoong Choi, Byeongmin Park, Jung Yeon Park, Dongwon Shin, Sangmin Lee, Hong Yeol Yoon, Kwangmeyung Kim, Sun Hwa Kim, Yongju Kim, Yoosoo Yang, Man Kyu Shim

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

While proteolysis-targeting chimeras (PROTACs) hold great potential for persistently reprogramming the immunosuppressive tumor microenvironment via targeted protein degradation, precisely activating them in tumor tissues and preventing uncontrolled proteolysis at off-target sites remain challenging. Herein, a light-triggered PROTAC nanoassembly (LPN) for photodynamic indoleamine 2,3-dioxygenase (IDO) proteolysis is reported. The LPN is derived from the self-assembly of prodrug conjugates, which comprise a PROTAC, cathepsin B-specific cleavable peptide linker, and photosensitizer, without any additional carrier materials. In colon tumor models, intravenously injected LPNs initially silence the activity of PROTACs and accumulate significantly in targeted tumor tissues due to an enhanced permeability and retention effect. Subsequently, the cancer biomarker cathepsin B begins to trigger the release of active PROTACs from the LPNs through enzymatic cleavage of the linkers. Upon light irradiation, tumor cells undergo immunogenic cell death induced by photodynamic therapy to promote the activation of effector T cells, while the continuous IDO degradation of PROTAC simultaneously blocks tryptophan metabolite-regulated regulatory-T-cell-mediated immunosuppression. Such LPN-mediated combinatorial photodynamic IDO proteolysis effectively inhibits tumor growth, metastasis, and recurrence. Collectively, this study presents a promising nanomedicine, designed to synergize PROTACs with other immunotherapeutic modalities, for more effective and safer cancer immunotherapy.

Original languageEnglish
JournalAdvanced Materials
DOIs
StateAccepted/In press - 2024

Bibliographical note

Publisher Copyright:
© 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbH.

Keywords

  • cancer immunotherapy
  • indoleamine 2,3-dioxygenase (IDO)
  • nanomedicine
  • photodynamic therapy (PDT)
  • proteolysis-targeting chimeras (PROTACs)

Fingerprint

Dive into the research topics of 'Light-Triggered PROTAC Nanoassemblies for Photodynamic IDO Proteolysis in Cancer Immunotherapy'. Together they form a unique fingerprint.

Cite this